Abstract:
Methods, systems, and devices for multiplexing distinct signals on a single pin of a memory device are described. Techniques are described herein to multiplex data using a modulation scheme having at least three levels. The modulated data may be communicated to multiple memory dies over a shared bus. Each of the dies may include a same or different type of memory cell and, in some examples, a multi-level signaling scheme may be pulse amplitude modulation (PAM). Each unique symbol of the modulated signal may be configured to represent a plurality of bits of data.
Abstract:
Methods, systems, and devices that supports dual-mode modulation in the context of memory access are described. A system may include a memory array coupled with a buffer, and a multiplexer may be coupled with the buffer, where the multiplexer may be configured to output a bit pair representative of data stored within the memory array. The multiplexer may also be coupled with a driver, where the driver may be configured to generate a symbol representative of the bit pair that is output by the multiplexer.
Abstract:
Apparatuses and methods for targeted row refreshes are disclosed herein. In an example apparatus, a predecoder receives a target row address and determines whether a target row of memory associated with the target row address is a primary or a redundant row of memory. The predecoder is further configured to cause one or more rows of memory physically adjacent the primary row of memory to be refreshed if the primary row is the target row or one or more rows of memory physically adjacent the redundant row of memory to be refreshed if the redundant row of memory is the target row of memory.
Abstract:
Memory die can be stacked to form a three-dimensional integrated circuit. For example, through-silicon vias (TSVs) can permit signals to pass vertically through the three-dimensional integrated circuit. Disclosed herein are apparatuses and methods to perform post package trimming of memory die, which advantageously permits the memory die to be trimmed after the memory die is stacked, such that test and trimming characteristics are relatively close to that which will be actually be encountered.
Abstract:
Semiconductor devices having modified current distribution and methods of forming the same are described herein. As an example, a memory die in contact with a logic die can be configured to draw a sum amount of current from a current source. The memory die can include a plurality of through-substrate vias (TSVs) formed in the memory die and configured to provide the sum amount of current to the memory die from the current source. The memory die can include at least two interconnection contacts associated with a first TSV closer to the current source that are not connected. The memory die can include an electrical connection between at least two interconnection contacts associated with a second TSV that is further in distance from the current source than the first TSV.
Abstract:
Apparatuses and methods for targeted row refreshes are disclosed herein. In an example apparatus, a predecoder receives a target row address and determines whether a target row of memory associated with the target row address is a primary or a redundant row of memory. The predecoder is further configured to cause one or more rows of memory physically adjacent the primary row of memory to be refreshed if the primary row is the target row or one or more rows of memory physically adjacent the redundant row of memory to be refreshed if the redundant row of memory is the target row of memory.
Abstract:
Apparatuses, sense circuits, and methods for controlling a clock signal to a clock tree is described. An example apparatus includes a consecutive write command detection circuit configured to detect whether a next write command is received within a consecutive write command period of a current write command responsive to the current write command provided at an output of the write command register. The example apparatus further includes a clock signal control circuit coupled to the consecutive write command detection circuit and configured to control a clock signal to an input/output (I/O) latch based on whether the consecutive write command detection circuit detects that the next write command is within the consecutive write command period.
Abstract:
Apparatuses and methods for memory refreshing memory cells is described. An example method includes receiving a self refresh command at a memory. The method further includes refreshing the memory at a first refresh rate after receiving the self refresh command. The method further includes refreshing the memory at a second refresh rate in response to a determination that each memory cell of the memory has been refreshed at the first refresh rate. The first refresh rate is greater than a second refresh rate.
Abstract:
Methods, systems, and devices that support variable modulation schemes for memory are described. A device may switch between different modulation schemes for communication based on one or more operating parameters associated with the device or a component of the device. The modulation schemes may involve amplitude modulation in which different levels of a signal represent different data values. For instance, the device may use a first modulation scheme that represents data using two levels and a second modulation scheme that represents data using four levels. In one example, the device may switch from the first modulation scheme to the second modulation scheme when bandwidth demand is high, and the device may switch from the second modulation scheme to the first modulation scheme when power conservation is in demand. The device may also, based on the operating parameter, change the frequency of the signal pulses communicated using the modulation schemes.
Abstract:
Methods, systems, and devices for multiplexing distinct signals on a single pin of a memory device are described. Techniques are described herein to multiplex data using a modulation scheme having at least three levels. The modulated data may be communicated to multiple memory dies over a shared bus. Each of the dies may include a same or different type of memory cell and, in some examples, a multi-level signaling scheme may be pulse amplitude modulation (PAM). Each unique symbol of the modulated signal may be configured to represent a plurality of bits of data.