摘要:
A nitrogen-group III compound semiconductor satisfying the formula Al.sub.x Ga.sub.y In.sub.1-x-y N, inclusive of x=0, y=0 and x=y=0, and a method for producing the same comprising the steps of forming a zinc oxide (ZnO) intermediate layer on a sapphire substrate, forming a nitrogen-group III semiconductor layer satisfying the formula Al.sub.x Ga.sub.y In.sub.1-x-y N, inclusive of x=0, y=0 and x=y=0 on the intermediate ZnO layer, and separating the intermediate ZnO layer by wet etching with an etching liquid only for the ZnO layer.
摘要翻译:满足式Al x Ga y In 1-x-y N,包括x = 0,y = 0和x = y = 0的氮 - 基III族化合物半导体及其制造方法包括以下步骤:形成氧化锌(ZnO) 在中间ZnO层上形成满足式Al x Ga y In 1-x-y N的氮基III半导体层,包括x = 0,y = 0和x = y = 0,并分离中间体ZnO 通过仅用于ZnO层的蚀刻液进行湿法蚀刻。
摘要:
A process for producing a semiconductor emitting device of group III nitride semiconductor having a crystal layer (Al.sub.x Ga.sub.1-x).sub.1-y In.sub.y N (0.ltoreq.x.ltoreq.1, 0.ltoreq.y.ltoreq.1) includes; a step of forming at least one pn-junction or pin-junction and a crystal layer (Al.sub.x Ga.sub.1-x).sub.1-y In.sub.y N (0.ltoreq.x.ltoreq.1, 0.ltoreq.y.ltoreq.1) to which a group II element is added; and a step of forming electrodes on the crystal layer. The process further includes an electric-field-assisted annealing treatment in which the pn-junction or pin-junction is heated to the predetermined temperature range while forming and maintaining an electric field across the pn-junction or pin-junction for at least partial time period of the predetermined temperature range via the electrodes.
摘要翻译:一种用于制造半导体具有晶体层(的AlxGa1-x)的1-yInyN(0 = X = 1,0 = Y = 1)包括发光III族氮化物半导体的器件的方法; 形成至少一个pn结或pin结和一个液晶层(的AlxGa1-X)的步骤1-yInyN(0 = X = 1,0 = Y = 1)到其上 添加第二组元素; 以及在所述晶体层上形成电极的步骤。 该过程还包括电场辅助退火处理,其中,同时形成和跨越pn结或pin结保持的电场至少部分时间的pn结或pin结被加热到预定的温度范围 经由电极的预定温度范围的周期。
摘要:
A method for forming a resonator in a semiconductor laser device comprises the steps of; filling with a resin a gap surrounding the side surfaces of the waveguide for a resonator other than the end-surface to be polished; polishing the end-surface and the resin surrounding it; forming a predetermined optical coating on the polished end-surface and the resin in the state of the laser waveguide and the electrode being embedded; and removing the embedding resin. Both the bending of polished end-surfaces and the entering of the thin film into the side surface of the laser waveguide is prevented so that a high smooth end-surface of mirror coating for resonator is achieved. Furthermore, any crystals are used for a substrate carrying a semiconductor laser structure with a resonator even if that crystal is of non-cleavage, according to that method.
摘要:
An improved laser diode is made of a gallium nitride compound semiconductor ((Al.sub.x Ga.sub.1-x).sub.y In.sub.1-y N; 0.ltoreq.x.ltoreq.1; 0.ltoreq.x.ltoreq.1) with a double heterojunction structure having the active layer held between layers having a greater band gap. The laser diode comprises mirror surfaces formed by cleaving the multi-layered coating and the sapphire substrate in directions parallel to (c axis) of the sapphire substrate. The intermediate zinc oxide (ZnO) layer is selectively removed by wet etching with a ZnO-selective liquid etchant so as to form gaps between the sapphire substrate and the bottom-most sub-layer of the semiconductor laser element layer. The semiconductor laser element layer is cleaved with the aid of the gaps, and the resulting planes of cleavage are used as the mirror surfaces of the laser cavity.
摘要翻译:改进的激光二极管由氮化镓化合物半导体((Al x Ga 1-x)y In 1-y N; 0 (c轴)平行的方向上切割多层涂层和蓝宝石衬底而形成的镜面。 通过用ZnO选择性液体蚀刻剂的湿蚀刻选择性地除去中间氧化锌(ZnO)层,以便在蓝宝石衬底和半导体激光元件层的最底层子层之间形成间隙。 借助于间隙切割半导体激光元件层,并将所得到的切割平面用作激光腔的镜面。
摘要:
There are disclosed two types of gallium nitride LED having the pn junction. An LED of gallium nitride compound semiconductor (Al.sub.x Ga.sub.1-x N, where 0.ltoreq.x
摘要翻译:公开了具有pn结的两种类型的氮化镓LED。 氮化镓化合物半导体(Al x Ga 1-x N,其中0 <= x <1)的LED包括n层; 在掺杂p型杂质和照射电子线时显示p型导电的p层,p层与n层的接合; 用于n层的第一电极,以连接到n层,穿过形成在从p层延伸到n层的p层中的孔; 以及p层的第二电极,其形成在由p层中形成的沟槽分隔开的区域中,以便从p层的上表面延伸到所述n层。 LED包括n层; 掺有p型杂质的i层,i层与n层结合; 用于所述n层的第一电极,以连接到n层,穿过形成在从i层的上表面延伸到n层的i层中的孔; 在i层的特定区域中的p型部分,其通过用电子射线转换成p型导电,所述p型部分被形成为使得所述第一电极被所述i层绝缘和分离; 和用于所述p型部件的第二电极。
摘要:
A novel light-emitting device includes a saphire substrate with a light-emitting layer comprising InXGa1−XN, where the critical value of the indium mole fraction X is determined by a newly derived relationship between the indium mole fraction X and the wavelength λ of emitted light.
摘要翻译:一种新颖的发光器件包括具有包含In x N Ga 1-X N的发光层的锡箔衬底,其中铟摩尔分数X的临界值为 通过铟摩尔分数X和发射光的波长λ之间的新衍生关系来确定。
摘要:
A nitride semiconductor device that comprises a first layer, a second layer and a buffer layer sandwiched between the first layer and the second layer. The second layer is a layer of a single-crystal nitride semiconductor material including AlN and has a thickness greater than the thickness at which cracks would form if the second layer were grown directly on the first layer. The buffer layer is a layer of a low-temperature-deposited nitride semiconductor material that includes AlN. Incorporating the nitride semiconductor device into a semiconductor laser diode enables the laser diode to generate coherent light having a far-field pattern that exhibits a single peak.
摘要:
An optical semiconductor device having a plurality of GaN-based semiconductor layers containing a strained quantum well layer in which the strained quantum well layer has a piezoelectric field that depends on the orientation of the strained quantum well layer when the quantum layer is grown. In the present invention, the strained quantum well layer is grown with an orientation at which the piezoelectric field is less than the maximum value of the piezoelectric field strength as a function of the orientation. In devices having GaN-based semiconductor layers with a wurtzite crystal structure, the growth orientation of the strained quantum well layer is tilted at least 1° from the {0001} direction of the wurtzite crystal structure. In devices having GaN-based semiconductor layers with a zincblende crystal structure, the growth orientation of the strained quantum well layer is tilted at least 1° from the {111} direction of the zincblende crystal structure. In the preferred embodiment of the present invention, the growth orientation is chosen to minimize the piezoelectric field in the strained quantum well layer.
摘要:
A light-emitting diode or laser diode is provided which uses a Group III nitride compound semiconductor satisfying the formula (Al.sub.x Ga.sub.1-x).sub.y In.sub.1-y N, inclusive of 0.ltoreq.x.ltoreq.1, and 0.ltoreq.y.ltoreq.1. A double hetero-junction structure is provided which sandwiches an active layer between layers having wider band gaps than the active layer. The diode has a multi-layer structure which has either a reflecting layer to reflect emission light or a reflection inhibiting layer. The emission light of the diode exits the diode in a direction perpendicular to the double hetero-junction structure. Light emitted in a direction opposite to the light outlet is reflected by the reflecting film toward the direction of the light outlet. Further, the reflection inhibiting film, disposed at or near the light outlet, helps the release of exiting light by minimizing or preventing reflection. As a result, light can be efficiently emitted by the light-generating diode.
摘要翻译:提供一种发光二极管或激光二极管,其使用满足式(Al x Ga 1-x)y In 1-y N的III族氮化物化合物半导体,包括0≤x≤1,0≤y< = 1。 提供了一种双异质结结构,其在活性层之间具有更宽带隙的层之间夹持有源层。 二极管具有多层结构,其具有反射发射光的反射层或反射抑制层。 二极管的发射光在垂直于双异质结结构的方向上离开二极管。 在与光出口相反的方向上发射的光被反射膜反射到光出口的方向。 此外,设置在光出口处或附近的反射抑制膜通过最小化或防止反射来帮助释放出射光。 结果,光可以被发光二极管有效地发射。
摘要:
Disclosed are a gallium nitride type semiconductor device that has a single crystal of (Ga.sub.l-x Al.sub.x).sub.l-y In.sub.y N, which suppresses the occurrence of crystal defects and thus has very high crystallization and considerably excellent flatness, and a method of fabricating the same. The gallium nitride type semiconductor device comprises a silicon substrate, an intermediate layer consisting of a compound containing at least aluminum and nitrogen and formed on the silicon substrate, and a crystal layer of (Ga.sub.l-x Al.sub.x).sub.l-y In.sub.y N (0.ltoreq.x.ltoreq.1, 0.ltoreq.y.ltoreq.1, excluding the case of x=1 and y=0). According to the method of fabricating a gallium nitride base semiconductor device, a silicon single crystal substrate is kept at a temperature of 400 to 1300.degree. C. and is held in the atmosphere where a metaloganic compound containing at least aluminum and a nitrogen-containing compound are present to form a thin intermediate layer containing at least aluminum and nitrogen on a part or the entirety of the surface of the single crystal substrate, and then at least one layer or multiple layers of a single crystal of (Ga.sub.l- x Al.sub.x).sub.l-y In.sub.y N are formed on the intermediate layer.