摘要:
Perpendicular magnetic anisotropy (PMA) type magnetic random access memory cells are constructed with a composite PMA layer to provide a magnetic tunnel junction (MTJ) with an acceptable thermal barrier. A PMA coupling layer is deposited between a first PMA layer and a second PMA layer to form the composite PMA layer. The composite PMA layer may be incorporated in PMA type MRAM cells or in-plane type MRAM cells.
摘要:
An entropy source and a random number (RN) generator are disclosed. In one aspect, a low-energy entropy source includes a magneto-resistive (MR) element and a sensing circuit. The MR element is applied a static current and has a variable resistance determined based on magnetization of the MR element. The sensing circuit senses the resistance of the MR element and provides random values based on the sensed resistance of the MR element. In another aspect, a RN generator includes an entropy source and a post-processing module. The entropy source includes at least one MR element and provides first random values based on the at least one MR element. The post-processing module receives and processes the first random values (e.g., based on a cryptographic hash function, an error detection code, a stream cipher algorithm, etc.) and provides second random values having improved randomness characteristics.
摘要:
A method for integrating a magnetic tunnel junction (MTJ) device into an integrated circuit includes providing in a semiconductor back-end-of-line (BEOL) process flow a substrate having a first interlevel dielectric layer and at least a first metal interconnect. Over the first interlevel dielectric layer and the first metal interconnect, magnetic tunnel junction material layers are deposited. From the material layers a magnetic tunnel junction stack, coupled to the first metal interconnect, is defined using a single mask process. The magnetic tunnel junction stack is integrated into the integrated circuit.
摘要:
A Multi-Level Memory Cell (MLC) using multiple Magnetic Tunnel Junction (MTJ) structures having one or more layers with varying thickness is disclosed. The multiple MTJ structures, which are vertically stacked and arranged in series, may have substantially identical area dimensions to minimize fabrication costs because one mask can be used to pattern the multiple MTJ structures. Further, varying the thicknesses associated with the one or more layers may provide the multiple MTJ structures with different switching current densities and thereby increase memory density and improve read and write operations. In one embodiment, the layers with the varying thicknesses may include tunnel barriers or magnesium oxide layers associated with the multiple MTJ structures and/or free layers associated with the multiple MTJ structures.
摘要:
Asymmetric switching is defined for magnetic bit cell elements. A magnetic bit cell for memory and other devices includes a transistor coupled to an MTJ structure. A bit line is coupled at one terminal of the bit cell to the MTJ structure. At another terminal of the bit cell, a source line is coupled to the source/drain terminal of the transistor. The bit line is driven by a bit line driver that provides a first voltage. The source line is driven by a source line driver that provides a second voltage. The second voltage is larger than the first voltage. The switching characteristics of the bit cell and MTJ structure are improved and made more reliable by one or a combination of applying the higher second voltage to the source line and/or reducing the overall parasitic resistance in the magnetic bit cell element.
摘要:
According to an embodiment of the invention, a magnetic tunnel junction (MTJ) element includes a reference ferromagnetic layer, a storage ferromagnetic layer, and an insulating layer. The storage ferromagnetic layer includes a CoFeB sub-layer coupled to a CoFe sub-layer and/or a NiFe sub-layer through a non-magnetic sub-layer. The insulating layer is disposed between the reference and storage ferromagnetic layers.
摘要:
A magnetic tunnel junction (MTJ) device and fabrication method is disclosed. In a particular embodiment, a method of forming a magnetic tunnel junction (MTJ) device includes forming an MTJ cap layer on an MTJ structure and forming a top electrode layer over the MTJ cap layer. The top electrode layer includes a first nitrified metal.
摘要:
A computer program product estimates performance of an interconnect structure of a semiconductor integrated circuit (IC). The program product includes code executing on a computer to calculate at least one electrical characteristic of the interconnect structure based on input data accounting for multiple layers of the interconnect structure. The electrical characteristics can be capacitance, resistance, and/or inductance. The capacitance may be based upon multiple components, including a fringe capacitance component, a terminal capacitance component, and a coupling capacitance component.
摘要:
A device includes a magnetic tunnel junction (MTJ) structure and a cap layer in contact with the MTJ structure. The device also includes a spin-on material layer in contact with a sidewall portion of the cap layer and a conducting layer in contact with at least the spin-on material layer and a portion of the MTJ structure. The cap layer has been etched to expose a portion of an electrode contact layer of the MTJ structure. The conducting layer is in electrical contact with the exposed portion of the electrode contact layer of the MTJ structure.
摘要:
The present invention provides a solder bump structure. In one aspect, the solder bump structure is utilized in a semiconductor device, such as an integrated circuit. The semiconductor device comprises active devices located over a semiconductor substrate, interconnect layers comprising copper formed over the active devices, and an outermost metallization layer positioned over the interconnect layers. The outermost metallization layer comprises aluminum and includes at least one bond pad and at least one interconnect runner each electrically connected to an interconnect layer. An under bump metallization layer (UBM) is located over the bond pad, and a solder bump is located over the UBM.