摘要:
A method for fabricating a component having an electrical contact region on an n-conducting AlGaInP-based or AlGaInAs-based outer layer of an epitaxially grown semiconductor layer sequence, in which electrical contact material, which includes Au and at least one dopant, is applied and the outer layer is then annealed. The dopant contains at least one element selected from the group consisting of Ge, Si, Sn and Te. Also, a component is disclosed which includes an epitaxially grown semiconductor layer sequence with an active zone which emits electromagnetic radiation, the semiconductor layer sequence having an n-conducting AlGaInP-based or AlGaInAs-based outer layer, to which an electrical contact region is applied using the method described.
摘要:
A TTG-DFB laser diode on a doped substrate having a stripe-shaped layer structure that has an intermediate layer between an active layer and a tuning layer. A confinement layer laterally adjoins this layer structure at both sides, is doped for the same conductivity type as the substrate and is electrically conductively connected to the substrate through an interruption of the layers situated therebelow. An upper region, that respectively extends up to the surface and that is oppositely doped, is formed in the confinement layer above the layer structure. A lateral region, separated therefrom and that is electrically conductively connected via a lower confinement layer to a side of the layer structure facing toward the substrate, is formed in the confinement layer. Contact layers and contacts are applied on the upper region and on the lateral region, and a contact is applied on the substrate, so that separate current injection into both the active layer and the tuning layer is possible through the intermediate layer.
摘要:
A carrier (1) for an optoelectronic structure (2) is specified, wherein in places an electrically insulating passivation material (16) is arranged between an electrically conductive layer (14) of the carrier (1) and a carrier-side connecting means layer (15). Furthermore, an optoelectronic semiconductor chip comprising such a carrier and an optoelectronic structure (2) is specified, said structure being electrically conductively and mechanically connected to the carrier (1) by means of the carrier-side connecting means layer (15).
摘要:
A carrier (1) for an optoelectronic structure (2) is specified, wherein in places an electrically insulating passivation material (16) is arranged between an electrically conductive layer (14) of the carrier (1) and a carrier-side connecting means layer (15). Furthermore, an optoelectronic semiconductor chip comprising such a carrier and an optoelectronic structure (2) is specified, said structure being electrically conductively and mechanically connected to the carrier (1) by means of the carrier-side connecting means layer (15).
摘要:
An optoelectronic semiconductor chip (1) is specified having a semiconductor body (2) which comprises a semiconductor layer sequence and an active area which is suitable for radiation production, and having a radiation-permeable and electrically conductive contact layer (6) which is arranged on the semiconductor body and is electrically conductively connected to the active area, with the contact layer extending over a barrier layer (5) in the semiconductor layer sequence and over a connecting layer (4) in the semiconductor layer sequence, and with the contact layer being electrically conductively connected to the active area via a connecting area (7) of the connecting layer. A method is also specified for producing a contact structure for an optoelectronic semiconductor chip which is suitable for radiation production.
摘要:
A surface emitting semiconductor laser includes a first semiconductor layer sequence, which comprises a pump laser. A second semiconductor layer sequence is arranged on the first semiconductor layer sequence and comprises a vertical emitter. The vertical emitter has a radiation-emitting active layer, a radiation exit side and a connecting side lying opposite the radiation exit side. The pump laser is arranged at the radiation exit side of the vertical emitter and a carrier body is arranged at the connecting side of the vertical emitter. Furthermore, a method for producing a surface emitting semiconductor laser is specified.
摘要:
An optoelectronic component includes an optical pump device including a first radiation-generating layer and a first radiation exit area at a top side of the pump device, wherein electromagnetic radiation generated during operation of the pump device is coupled out from the pump device through the first radiation exit area transversely and at least in part non-perpendicularly with respect to the first radiation-generating layer, and a surface emitting semiconductor laser chip including a reflective layer sequence including a Bragg mirror, and a second radiation-generating layer, wherein the surface emitting semiconductor laser chip is fixed to the top side of the pump device, and the reflective layer sequence is arranged between the first radiation exit area and the second radiation-generating layer.
摘要:
A surface emitting semiconductor laser includes a first semiconductor layer sequence, which comprises a pump laser. A second semiconductor layer sequence is arranged on the first semiconductor layer sequence and comprises a vertical emitter. The vertical emitter has a radiation-emitting active layer, a radiation exit side and a connecting side lying opposite the radiation exit side. The pump laser is arranged at the radiation exit side of the vertical emitter and a carrier body is arranged at the connecting side of the vertical emitter. Furthermore, a method for producing a surface emitting semiconductor laser is specified.
摘要:
For producing semiconductor chips by thin-film technology, an active layer (2) that has been grown on a substrate, with contact layers on the back side that have a base layer (3), is reinforced by a reinforcement layer (4). Next, an auxiliary carrier layer (5) is applied, which makes the further processing of the active layer (2) possible. The reinforcement layer (4) and the auxiliary carrier layer (5) replace the mechanical carriers used in conventional methods.
摘要:
A method for producing a multiplicity of semiconductor lasers (100) comprising the steps of providing a carrier wafer (30), producing an assembly (70) by applying a multiplicity of semiconductor laser chips (4) to a top side (31) of the carrier wafer (30), and singulating the assembly (70) to form a multiplicity of semiconductor lasers (100). Each semiconductor laser (100) comprises a mounting block (3) and at least one semiconductor laser chip (4). Each mounting block (3) has a mounting area (13) which runs substantially perpendicular to a top side (12) of the mounting block (3), on which top side the semiconductor laser chip (4) is arranged. The mounting area (13) is produced during the singulation of the assembly.