摘要:
Methods for controllably forming Sb—Te, Ge—Te, and Ge—Sb—Te thin films are provided. ALD processes can be used to deposit a first film comprising ZnTe. Providing an antimony source chemical, such as SbI3 replaces the zinc, thereby forming Sb2Te3 thin films. Ge—Te and Ge—Sb—Te films can also be made by providing Ge sources to ZnTe and Sb—Te thin films, respectively.
摘要:
A method is provided for growing thin oxide films on the surface of a substrate by alternatively reacting the surface of the substrate with a metal source material and an oxygen source material. The oxygen source material is preferably a metal alkoxide. The metal source material may be a metal halide, hydride, alkoxide, alkyl, a cyclopentadienyl compound, or a diketonate.
摘要:
A metamaterial thin film with plasmonic properties formed by depositing metallic films by atomic layer deposition onto a substrate to form a naturally occurring mosaic-like nanostructure having two-dimensional features with air gaps between the two-dimensional features. Due to the unique deposition nanostructure, plasmonic thin films of metal or highly conducting materials can be produced on any substrate, including fabrics and biological materials. In addition, these plasmonic materials can be used in conjunction with geometric patterns that may be used to create multiple resonance plasmonic metamaterials.
摘要:
Processes are provided for producing bismuth-containing oxide thin films by atomic layer deposition. In preferred embodiments an organic bismuth compound having at least one monodentate alkoxide ligand is used as a bismuth source material. Bismuth-containing oxide thin films can be used, for example, as ferroelectric or dielectric materials in integrated circuits and as superconductor materials.
摘要:
The present application relates to atomic layer deposition (ALD) processes for producing metal phosphates such as titanium phosphate, aluminum phosphate and lithium phosphate, as well as to ALD processes for depositing lithium silicates.
摘要:
Methods are provided herein for forming transition metal oxide thin films, preferably Group IVB metal oxide thin films, by atomic layer deposition. The metal oxide thin films can be deposited at high temperatures using metalorganic reactants. Metalorganic reactants comprising two ligands, at least one of which is a cycloheptatriene or cycloheptatrienyl (CHT) ligand are used in some embodiments. The metal oxide thin films can be used, for example, as dielectric oxides in transistors, flash devices, capacitors, integrated circuits, and other semiconductor applications.
摘要:
Vapor deposition precursors that can deposit conformal thin ruthenium films on substrates with a very high growth rate, low resistivity and low levels of carbon, oxygen and nitrogen impurities have been provided. The precursors described herein include a compound having the formula CMC′, wherein M comprises a metal or a metalloid; C comprises a substituted or unsubstituted acyclic alkene, cycloalkene or cycloalkene-like ring structure; and C′ comprises a substituted or unsubstituted acyclic alkene, cycloalkene or cycloalkene-like ring structure; wherein at least one of C and C′ further and individually is substituted with a ligand represented by the formula CH(X)R1, wherein X is a N, P, or S-substituted functional group or hydroxyl, and R1 is hydrogen or a hydrocarbon. Methods of production of the vapor deposition precursors and the resulting films, and uses and end uses of the vapor deposition precursors and resulting films are also described.
摘要:
Atomic layer deposition (ALD) type processes for producing titanium containing oxide thin films comprise feeding into a reaction space vapour phase pulses of titanium alkoxide as a titanium source material and at least one oxygen source material, such as ozone, capable of forming an oxide with the titanium source material. In preferred embodiments the titanium alkoxide is titanium methoxide.
摘要:
Atomic layer deposition (ALD) type processes for producing titanium containing oxide thin films comprise feeding into a reaction space vapour phase pulses of titanium alkoxide as a titanium source material and at least one oxygen source material, such as ozone, capable of forming an oxide with the titanium source material. In preferred embodiments the titanium alkoxide is titanium methoxide.