摘要:
The following disclosure describes several embodiments of (1) methods for wafer-level packaging of microelectronic imagers, (2) methods of forming electrically conductive interconnects in microelectronic imagers, (3) methods for forming optical devices for microelectronic imagers, and (4) microelectronic imagers that have been packaged using wafer-level packaging processes. Wafer-level packaging of microelectronic imagers is expected to significantly enhance the efficiency of manufacturing microelectronic imagers because a plurality of imagers can be packaged simultaneously using highly accurate and efficient processes developed for packaging semiconductor devices. Moreover, wafer-level packaging of microelectronic imagers is expected to enhance the quality and performance of such imagers because the semiconductor fabrication processes can reliably align an optical device with an image sensor and space the optical device apart from the image sensor by a desired distance with a higher degree of precision.
摘要:
Microelectronic imagers, methods for packaging microelectronic imagers, and methods for forming electrically conductive through-wafer interconnects in microelectronic imagers are disclosed herein. In one embodiment, a microelectronic imaging die can include a microelectronic substrate, an integrated circuit, and an image sensor electrically coupled to the integrated circuit. A bond-pad is carried by the substrate and electrically coupled to the integrated circuit. An electrically conductive through-wafer interconnect extends through the substrate and is in contact with the bond-pad. The interconnect can include a passage extending completely through the substrate and the bond-pad, a dielectric liner deposited into the passage and in contact with the substrate, first and second conductive layers deposited onto at least a portion of the dielectric liner, and a conductive fill material deposited into the passage over at least a portion of the second conductive layer and electrically coupled to the bond-pad.
摘要:
Microelectronic imaging devices and methods of packaging microelectronic imaging devices are disclosed herein. In one embodiment, a microelectronic imaging device includes a microelectronic die having an integrated circuit, an image sensor electrically coupled to the integrated circuit, and a plurality of bond-pads electrically coupled to the integrated circuit. The imaging device further includes a cover over the image sensor and a plurality of interconnects in and/or on the cover that are electrically coupled to corresponding bond-pads of the die. The interconnects provide external electrical contacts for the bond-pads of the die. The interconnects can extend through the cover or along a surface of the cover.
摘要:
Microelectronic imaging devices and methods of packaging microelectronic imaging devices are disclosed herein. In one embodiment, a microelectronic imaging device includes a microelectronic die having an integrated circuit, an image sensor electrically coupled to the integrated circuit, and a plurality of bond-pads electrically coupled to the integrated circuit. The imaging device further includes a cover over the image sensor and a plurality of interconnects in and/or on the cover that are electrically coupled to corresponding bond-pads of the die. The interconnects provide external electrical contacts for the bond-pads of the die. The interconnects can extend through the cover or along a surface of the cover.
摘要:
Methods and devices for placing a semiconductor wafer or other substrate in contact with solder are described. A wave soldering apparatus includes a solder bath, a nozzle for producing a solder wave, and a jig for orienting a substrate in a substantially vertical orientation and placing the substrate in contact with a cascading solder wave. In another wave soldering apparatus, a jig orients a semiconductor wafer in a substantially horizontal orientation in contact with the solder wave. Another soldering apparatus includes a tank comprising molten solder and a fixture configured to orient one or more semiconductor wafers in a substantially vertical orientation. Methods of placing semiconductor wafers or other substrates in contact with solder using the devices of the present invention are also disclosed.
摘要:
Methods and devices for placing a semiconductor wafer or other substrate in contact with solder are described. A wave soldering apparatus includes a solder bath, a nozzle for producing a solder wave, and a jig for orienting a substrate in a substantially vertical orientation and placing the substrate in contact with a cascading solder wave. In another wave soldering apparatus, a jig orients a semiconductor wafer in a substantially horizontal orientation in contact with the solder wave. Another soldering apparatus includes a tank comprising molten solder and a fixture configured to orient one or more semiconductor wafers in a substantially vertical orientation. Methods of placing semiconductor wafers or other substrates in contact with solder using the devices of the present invention are also disclosed.
摘要:
Microelectronic imagers, methods for packaging microelectronic imagers, and methods for forming electrically conductive through-wafer interconnects in microelectronic imagers are disclosed herein. In one embodiment, a microelectronic imaging die can include a microelectronic substrate, an integrated circuit, and an image sensor electrically coupled to the integrated circuit. A bond-pad is carried by the substrate and electrically coupled to the integrated circuit. An electrically conductive through-wafer interconnect extends partially through the substrate and is in contact with the bond-pad. The interconnect can include a passage extending partially through the substrate to the bond-pad, a dielectric liner deposited into the passage and in contact with the substrate, a conductive layer deposited onto at least a portion of the dielectric liner, a wetting agent deposited onto at least a portion of the conductive layer, and a conductive fill material deposited into the passage and electrically coupled to the bond-pad.
摘要:
A method and apparatus for testing unpackaged semiconductor dice is provided. The method includes forming an interconnect-alignment fixture for use in a test apparatus adapted to hold and apply test signals to the die during burn-in and full functionality testing. The interconnect-alignment fixture includes an interconnect plate formed out of a material such as silicon. The interconnect plate includes raised contact members covered with a conductive layer and adapted to penetrate contact locations on the die to a limited penetration depth. The interconnect-alignment fixture also includes an alignment plate formed with etched alignment openings for aligning contact locations on the die with the contact members on the interconnect plate during the test procedure. In addition, the alignment plate includes access openings for establishing an electrical connection to the contact members on the interconnect plate using wire bonding or mechanical electrical connectors. The interconnect plate and alignment plate are fabricated at the wafer level and then singulated using semiconductor circuit fabrication techniques.
摘要:
A socket contact formation process comprises forming a contact head from a conductive material, forming a contact body from a semiconductive material configured to be electrically conductive; and joining the contact head and the contact body.
摘要:
A method of activating a metal structure on an intermediate semiconductor device structure toward metal plating. The method comprises providing an intermediate semiconductor device structure comprising at least one first metal structure and at least one second metal structure on a semiconductor substrate. The at least one first metal structure comprises at least one aluminum structure, at least one copper structure, or at least one structure comprising a mixture of aluminum and copper and the at least one second metal structure comprises at least one tungsten structure. One of the at least one first metal structure and the at least one second metal structure is activated toward metal plating without activating the other of the at least one first metal structure and the at least one second metal structure. An intermediate semiconductor device structure is also disclosed.