Abstract:
A layout structure of a central processing unit (CPU) that supports two different package techniques, comprising a motherboard that comprises the layout structure and a layout method. The layout structure of the preferred embodiment according to the present invention from up to down sequentially places a top signal layer, a grounded layer, a power layer having a grounded potential, and a bottom solder layer in the area where the signals of the CPU are coupled to the signals of the control chip, so that the signals that are placed on the bottom solder layer can refer to a grounded potential area of the power layer. Therefore, part of signals of the CPU that are coupled to the control chip can be placed on the bottom solder layer. Since the preferred embodiment of the present invention provides more flexibility in the placement design, a layout structure that supports the Pentium IV CPUs of different package techniques can be designed on the motherboard of the 4 layers stack structure, and these two CPUs can be supported by the same control chip.
Abstract translation:支持两种不同包装技术的中央处理单元(CPU)的布局结构,包括包括布局结构和布局方法的主板。 根据本发明的优选实施例的布局结构从上到下顺序地在CPU的信号区域中放置顶层信号层,接地层,具有接地电位的功率层和底部焊料层 耦合到控制芯片的信号,使得放置在底部焊料层上的信号可以指功率层的接地电位区域。 因此,耦合到控制芯片的CPU的部分信号可以放置在底部焊料层上。 由于本发明的优选实施例在布局设计中提供了更多的灵活性,因此可以在四层堆栈结构的主板上设计支持不同封装技术的Pentium IV CPU的布局结构,并且这两个CPU可以被 相同的控制芯片。
Abstract:
A substrate carries a voltage regulator module and a connector. By co-locating a voltage regulator to a processor or other circuit requiring a regulated power supply, distributed inductance associated with conventional circuit traces is reduced, thereby lessening demands on a voltage regulator and improving regulated voltage. A connector on the substrate can include internal filter capacitors to stabilize the output voltage from a voltage regulator. When the substrate is mounted to a circuit board, addition capacitors can be provided above and/or below the circuit board to which the substrate can be connected attached.
Abstract:
A method and an apparatus for improving the delivery and filtering of power to a semiconductor device is disclosed by organizing out interconnects (pins, balls, pads or other interconnects) used to carry power in a striped configuration that shortens the conductive path required between a power source and a semiconductor device and that reduces the resistance of that conductive path.
Abstract:
An apparatus for providing mechanical support to a column grid array package is disclosed. The column grid array package uses solder columns to provide electrical connections between a ceramic substrate and a printed circuit board. The ceramic substrate has two sides, with an integrated circuit chip mounted on one side and many input/output pads mounted on the other side. Solder columns are attached between the input/output pads and the printed circuit board. A corner post is located at each corner of the column grid array package to secure the position of the ceramic substrate in relation to the printed circuit board.
Abstract:
Embodiments of the present invention may provide for high-density and high speed interconnections while maintaining reduced signal interference. In some embodiments, differential signals are organized in connectors such that differential signal pairs are orthogonal to each other. In other embodiments, differential signal tri-conductor sets may be oriented such that they are generally orthogonal to each other. The orthogonal contact organization may provide for reduced coupling between differential signals.
Abstract:
A system and method for interconnecting circuit boards is disclosed. In one embodiment, a first circuit board connects with a second circuit board via a connector. The first circuit board has an aperture with a plurality of conductive surfaces on an inner surface. At least one of the conductive surfaces is coupled to at least one of a plurality of first circuit board traces. The second circuit board has a plurality of second circuit board traces. Therebetween, the connector has a plurality of conductive signal conductors, each having a first portion disposed at the periphery of the connector and adjacent to the conductive surfaces and a second portion coupled with the second circuit board traces.
Abstract:
Multiple through holes in a printed circuit board (PCB) are filled with a malleable, electrically conductive material, such as an elastomer containing a concentration of conductive particles. The material in each through hole forms an electrical contact at which a solder ball or pin of a ball grid array (BGA) or pin grid array (PGA) of a microelectronic package, respectively, will be coupled to the PCB.
Abstract:
A power delivery device includes a socket to couple and deliver power to an electronic component. A voltage control sensor is coupled to the socket to sense an output voltage at the socket and to provide negative feedback control. An impedance of the socket and an associated baseboard is incorporated into the negative feedback control and may help compensate for voltage droop in the output voltage.
Abstract:
Over voltage protection is provided for electronic circuits by disposing one or more ground bars for diverting harmful currents away from the sensitive electronic circuit elements. The ground bars are each associated with a row of contact portions of the electronic circuit. Microgaps between each contact portion and the corresponding ground bar are designed to provide an electrical conduit from the contact portion to the ground bar when normal operating voltages are exceeded, thereby channeling excess current harmlessly to ground. Under normal operating conditions, however, the microgaps act as electrical barriers, insulating the contact portions from ground. The microgaps may be filled with any combination of air, vacuum, or known variable voltage material.
Abstract:
The present invention comprises cost-effectively manufactured, electrically conductive and mechanically compliant micro-leads and a method of utilizing these compliant micro-leads to interconnect area grid array chip scale packages (nullCSPsnull) to printed wiring boards (nullPWBsnull). The preferred method includes orienting a plurality of conductive compliant micro-leads, secured to one another in parallel with tie bars and tooling, to align with a corresponding pattern of conductive pads located along the surface of an area grid array CSP. The compliant micro-leads are electrically connected and mechanically secured to the corresponding connecting surfaces of the area grid array CSP. Next, the securing tie bars and the tooling are removed. The opposite ends of the conductive compliant micro-leads are then oriented to align with a corresponding pattern of conductive surface pads on a PWB. The opposite end of each compliant micro-lead is then electrically connected and mechanically secured to its corresponding connecting pad located on the surface of the PWB, thereby establishing a compliant electrical connection between the area grid array CSP and the PWB. An alternative embodiment of the present invention utilizes an area grid array interposer with compliant micro-leads to provide additional compliancy.