摘要:
In various aspects, the processes disclosed herein may include the steps of inducing an electric field about a non-conductive substrate, and depositing functionalized nanoparticles upon the non-conductive substrate by contacting a nanoparticle dispersion with the non-conductive substrate, the nanoparticle dispersion comprising functionalized nanoparticles having an electrical charge, the electric field drawing the functionalized nanoparticles to the non-conductive substrate. In various aspects, the related composition of matter disclosed herein comprise functionalized nanoparticles bonded to a surface of a non-conductive fiber, the surface of the non-conductive fiber comprising a sizing adhered to the surface of the non-conductive fiber. This Abstract is presented to meet requirements of 37 C.F.R. §1.72(b) only. This Abstract is not intended to identify key elements of the processes, and related apparatus and compositions of matter disclosed herein or to delineate the scope thereof.
摘要:
A method of producing an optoelectronic semiconductor component includes providing a semiconductor body; applying a photoconductive layer on a radiation exit surface of the semiconductor body, wherein the semiconductor body emits electromagnetic radiation during operation; exposing at least one sub-region of the photoconductive layer with electromagnetic radiation generated by the semiconductor body; and depositing a conversion layer on the sub-region of the photoconductive layer by an electrophoresis process.
摘要:
To form graphene to a practically even thickness on an object having an uneven surface or a complex surface, in particular, an object having a surface with a three-dimensional structure due to complex unevenness, or an object having a curved surface. The object and an electrode are immersed in a graphene oxide solution, and voltage is applied between the object and the electrode. At this time, the object serves as an anode. Graphene oxide is attracted to the anode because of being negatively charged, and deposited on the surface of the object to have a practically even thickness. A portion where graphene oxide is deposited is unlikely coated with another graphene oxide. Thus, deposited graphene oxide is reduced to graphene, whereby graphene can be formed to have a practically even thickness on an object having surface with complex unevenness.
摘要:
A method of producing an optoelectronic semiconductor component includes providing a semiconductor body; applying a photoconductive layer on a radiation exit surface of the semiconductor body, wherein the semiconductor body emits electromagnetic radiation during operation; exposing at least one sub-region of the photoconductive layer with electromagnetic radiation generated by the semiconductor body; and depositing a conversion layer on the sub-region of the photoconductive layer by an electrophoresis process.
摘要:
An immersion-type surface treatment tank includes a treatment tank body including: a single tank internal space elongated in a plan view, and a nozzle that ejects an electrodeposition paint into the tank internal space. The treatment tank body includes: a first tank inner side surface extending along a longitudinal direction of the tank internal space; a second tank inner side surface facing the first tank inner side surface and extending along the longitudinal direction; and a rectifying plate that is formed halfway in the longitudinal direction and changes a flow direction of the electrodeposition paint such that the electrodeposition paint flowing horizontally along the first tank inner side surface is directed toward the second tank inner side surface. The rectifying plate changes the flow direction of the electrodeposition paint, thereby forming, in the tank internal space, at least two horizontal swirl flows adjacent to each other in the longitudinal direction.
摘要:
A method for producing an optoelectronic semiconductor chip is disclosed. In an embodiment, the method includes providing a semiconductor body with a pixel region including different subpixel regions, each subpixel region having a radiation exit face, applying an electrically conductive layer onto the radiation exit face of a subpixel region, wherein the electrically conductive layer is suitable at least in part for forming a salt with a protic reactant, and depositing a conversion layer on the electrically conductive layer using an electrophoresis process, wherein the deposited conversion layer comprises pores.
摘要:
In some examples, method including forming an EBC layer on a substrate, wherein the EBC layer exhibits an initial porosity; forming a layer of silicate glass on a surface of the EBC layer; and melting the silicate glass on the surface of the EBC layer to infiltrate the EBC layer with the molten silicate glass to decrease the porosity of the EBC layer from the initial porosity to a final porosity.
摘要:
A method of producing a complex product includes designing a three dimensional preform of the complex product, creating a three dimensional preform of the complex product using the model, depositing a material on the preform, and removing the preform to complete the complex product. In one embodiment the system provides a complex heat sink that can be used in heat dissipation in power electronics, light emitting diodes, and microchips.
摘要:
A method for producing a laterally structured phosphor layer and an optoelectronic component comprising such a phosphor layer are disclosed. In an embodiment the method includes providing a carrier having a first electrically conductive layer at a carrier top side, applying an insulation layer to the first electrically conductive layer and a second electrically conductive layer to the insulation layer, etching the second electrically conductive layer and the insulation layer, wherein the first electrically conductive layer is maintained as a continuous layer. The method further includes applying a voltage to the first electrically conductive layer and electrophoretically coating the first electrically conductive layer with a first material, and applying a voltage to the second electrically conductive layer and electrophoretically coating the second electrically conductive layer with a second material.
摘要:
An insulated metal substrate (IMS) for supporting a device comprises a metallic substrate having a ceramic coating formed at least in part by oxidation of a portion of the surface of the metallic substrate. The ceramic coating has a dielectric strength of greater than 50 KV mm−1 and a thermal conductivity of greater than 5 Wm−1K−1.