Abstract:
A light emitting diode (LED) system includes a substrate, an application specific integrated circuit (ASIC) on the substrate, and at least one light emitting diode (LED) on the substrate in electrical communication with the application specific integrated circuit (ASIC). The light emitting diode (LED) system can also include a polymer lens, and a phosphor layer on the lens or light emitting diode (LED) for producing white light. In addition, multiple light emitting diodes (LEDs) can be mounted on the substrate, and can have different colors for smart color control lighting. The substrate and the application specific integrated circuit (ASIC) are configured to provide an integrated system having smart functionality. In addition, the substrate is configured to compliment and expand the functions of the application specific integrated circuit (ASIC), and can also include built in integrated circuits for performing additional electrical functions.
Abstract:
Techniques for controlling current flow in semiconductor devices, such as LEDs are provided. For some embodiments, a current guiding structure may be provided including adjacent high and low contact areas. For some embodiments, a second current path (in addition to a current path between an n-contact pad and a metal alloy substrate) may be provided. For some embodiments, both a current guiding structure and second current path may be provided.
Abstract:
Methods are provided for fabricating a semiconductor light-emitting diode (LED) device by providing an LED wafer assembly having an LED stack and selectively roughening and/or texturing a light-emitting surface of the LED stack's n-doped layer. In this manner, light extraction from the LED device is improved.
Abstract:
Techniques for dicing wafer assemblies containing multiple metal device dies, such as vertical light-emitting diode (VLED), power device, laser diode, and vertical cavity surface emitting laser device dies, are provided. Devices produced accordingly may benefit from greater yields and enhanced performance over conventional metal devices, such as higher brightness of the light-emitting diode and increased thermal conductivity. Moreover, such techniques are applicable to GaN-based electronic devices in cases where there is a high heat dissipation rate of the metal devices that have an original non- (or low) thermally conductive and/or non- (or low) electrically conductive carrier substrate that has been removed.
Abstract:
Systems and methods are disclosed for fabricating a semiconductor light-emitting diode (LED) device by forming an n-doped gallium nitride (n-GaN) layer on the LED device and roughening the surface of the n-GaN layer to extract light from an interior of the LED device.
Abstract:
A semiconductor continuous array layer comprising: an array of multiple semiconductor units; a sidewall of each semiconductor unit is surrounded by a semi-cured material or a cured material connecting the semiconductor units together to form a semiconductor continuous array; wherein multiple voids or air gaps are enclosed by the semi-cured material or the cured material within the semiconductor continuous array or around the edge of the semiconductor continuous array.
Abstract:
A method to fill the flowable material into the semiconductor assembly module gap regions is described. In an embodiment, multiple semiconductor units are formed on the substrate to create an array module; the array module is attached to a backplane having circuitry to form the semiconductor assembly module in which multiple gap regions are formed inside the semiconductor assembly module and edge gap regions are formed surround an edge of the assembly module; The flowable material is forced inside the gap regions by performing the high acting pressure environment and then cured to be a stable solid to form a robustness structure. A semiconductor convert module is formed by removing the substrate utilizing a substrate removal process. A semiconductor driving module is formed by utilizing a connecting layer on the semiconductor convert module. In one embodiment, a vertical light emitting diode semiconductor driving module is formed to light up the vertical LED array. In another one embodiment, multiple color emissive light emitting diodes semiconductor driving module is formed to display color images. In another embodiment, multiple patterns of semiconductor units having multiple functions semiconductor driving module is formed to provide multiple functions for desire application.
Abstract:
A method to fill the flowable material into the semiconductor assembly module gap regions is described. In an embodiment, multiple semiconductor units are formed on the substrate to create an array module; the array module is attached to a backplane having circuitry to form the semiconductor assembly module in which multiple gap regions are formed inside the semiconductor assembly module and edge gap regions are formed surround an edge of the assembly module; The flowable material is forced inside the gap regions by performing the high acting pressure environment and then cured to be a stable solid to form a robustness structure. A semiconductor convert module is formed by removing the substrate utilizing a substrate removal process. A semiconductor driving module is formed by utilizing a connecting layer on the semiconductor convert module. In one embodiment, a vertical light emitting diode semiconductor driving module is formed to light up the vertical LED array. In another one embodiment, multiple color emissive light emitting diodes semiconductor driving module is formed to display color images. In another embodiment, multiple patterns of semiconductor units having multiple functions semiconductor driving module is formed to provide multiple functions for desire application.
Abstract:
A vertical light emitting diode (VLED) die includes an epitaxial structure having a first-type confinement layer, an active layer on the first-type confinement layer configured as a multiple quantum well (MQW) configured to emit light, and a second-type confinement layer having a roughened surface. In a first embodiment, the roughened surface includes a pattern of holes with a depth (d) in a major surface thereof surrounded by a pattern of protuberances with a height (h) on the major surface. In a second embodiment, the roughened surface includes a pattern of primary protuberances surrounded by a pattern of secondary protuberances.
Abstract:
Techniques for fabricating metal devices, such as vertical light-emitting diode (VLED) devices, power devices, laser diodes, and vertical cavity surface emitting laser devices, are provided. Devices produced accordingly may benefit from greater yields and enhanced performance over conventional metal devices, such as higher brightness of the light-emitting diode and increased thermal conductivity. Moreover, the invention discloses techniques in the fabrication arts that are applicable to GaN-based electronic devices in cases where there is a high heat dissipation rate of the metal devices that have an original non- (or low) thermally conductive and/or non- (or low) electrically conductive carrier substrate that has been removed.