Abstract:
A porous separator, to be used in electrolyzers for producing hydrogen and oxygen by water electrolysis, consists of a fabric or felt entirely made of polyphenylene sulfide (PPS). In order to reduce the voltage drop caused by the separator, the PPS polymeric chain can be made ionically active by the presence thereon of polar groups, such as sulfonic, carboxylic or phosphonic groups.The method for producing the separator comprises the preparation, according to conventional weaving or felt manufacturing techniques, of a fabric or felt entirely made of PPS and the subsequent functionalization for introducing polar groups in the polymeric chain. The functionalization can be carried out either on the starting material, such as PPS polymer powder or flakes, or in any other step of the production of fabric or felt.
Abstract:
An embodiment of a method for producing traceable integrated circuits includes forming on a wafer of semiconductor material functional regions for implementing specific functionalities of corresponding integrated circuits, forming at least one seal ring around each functional region of the corresponding integrated circuit, and forming on each integrated circuit at least one marker indicative of information of the integrated circuit. Forming on each integrated circuit at least one marker may include forming the at least one marker on at least a portion of the respective seal ring that is visible.
Abstract:
An embodiment of a RF identification device is formed by a tag and by a reader. The tag is formed by a processing circuit and a first antenna, which has the function both of transmitting and of receiving data. The reader is formed by a control circuit and by a second antenna, which has the function both of transmitting and of receiving data. The processing circuit is formed by a resonance capacitor, a modulator, a rectifier circuit, a charge-pump circuit and a detection circuit. The antenna of the tag and the processing circuit are integrated in a single structure in completely monolithic form. The first antenna has terminals connected to the input of the rectifier circuit, the output of which is connected to the charge-pump circuit. The charge-pump circuit has an output connected to the detection circuit.
Abstract:
A testing apparatus includes a tester and a probe card system that includes a probe card connected to the tester, and an active interposer connected to the probe card and wirelessly coupled with a device to be tested. The active interposer includes pads positioned on its free surface facing the device. The pads are positioned with respect to pads of the device so that each pad of the active interposer faces a pad of the device and is separated therefrom by a dielectric. Each pair of facing pads forms an elementary wireless coupling element which allows a wireless transmission between the active interposer and the device. The active interposer also includes an amplifier circuit configured to amplify wireless signals from the device before forwarding them to the tester. The probe card system includes a transmission element able to transmit a power voltage from the tester to the device.
Abstract:
A sensing structure for use in testing integrated circuits on a substrate. The sensing structure includes at least two sensing regions connectable to a probe and at least one first sensing element. Each of the at least one first sensing elements is directly connected to two sensing regions such that for each sensing region a different value of an electrical parameter is measurable between the sensing region and a first reference potential so as to reliably determine a drift direction of a probe.
Abstract:
An embodiment of a testing system for carrying out electrical testing of at least one first through via extending, at least in part, through a substrate of a first body of semiconductor material. The testing system has a first electrical test circuit integrated in the first body and electrically coupled to the first through via and to electrical-connection elements carried by the first body for electrical connection towards the outside; the first electrical test circuit enables detection of at least one electrical parameter of the first through via through the electrical-connection elements.
Abstract:
A retinal prosthesis including an electronic stimulation unit housed inside an eye and including: a plurality of electrodes that contact a portion of a retina of the eye; an electronic control circuit, which is electrically connected to the electrodes and supplies to the electrodes electrical stimulation signals designed to stimulate the portion of retina; and a local antenna connected to the electronic control circuit. The retinal prosthesis further includes an electromagnetic expansion housed inside the eye and formed by a first expansion antenna and a second expansion antenna electrically connected together, the first expansion antenna being magnetically or electromagnetically coupled to an external antenna, the second expansion antenna being magnetically or electromagnetically couple to the local antenna, the electromagnetic expansion moreover receiving an electromagnetic supply signal transmitted by the external antenna and generating a corresponding replica signal.
Abstract:
A circuit architecture provides for the parallel supplying of power during electric or electromagnetic testing of electronic devices integrated on a same semiconductor wafer and bounded by scribe lines. The circuit architecture comprises a conductive grid interconnecting the electronic devices and having a portion external to the devices and a portion internal to the devices. The external portion extends along the scribe lines; and the internal portion extends within at least a part of the devices. The circuit architecture includes interconnection pads between the external portion and the internal portion of the conductive grid and provided on at least a part of the devices, the interconnection pads forming, along with the internal and external portions, power supply lines which are common to different electronic devices of the group.
Abstract:
A method of testing integrated circuits, including: establishing at least a first physical communication channel between a test equipment and an integrated circuit under test by having at least a first probe of the test equipment contacting a corresponding physical contact terminal of the integrated circuit under test; having the test equipment and the integrated circuit under test exchange, over said first physical communication channel, at least two signals selected from the group including at least two test stimuli and at least two test response signals, wherein said at least two signals are exchanged by means of at least one modulated carrier wave modulated by the at least two signals.
Abstract:
A method performs electrical testing and assembly of an electronic device on a wafer and comprising a pad made in an oxide layer covered by a passivation layer. The method includes connecting the electronic device to a testing apparatus; providing said electronic device with a metallization layer extending on the passivation layer from the pad to a non-active area of said wafer. The method comprises-performing the electrical testing on wafer of the electronic device by placing a probe of on a portion of the extended metallization layer; performing the cut of said wafer, reducing the extension of the metallization layer to the edge of the electronic device; embedding the device inside a package, forming on the metallization layer an electrical connection configured to connect the metallization layer to a circuit in said package.