Abstract:
A method and structure for stabilizing an array of micro devices is disclosed. The array of micro devices is formed on an array of stabilization posts formed from a thermoset material. Each micro device includes a bottom surface that is wider than a corresponding stabilization post directly underneath the bottom surface.
Abstract:
Display panels and methods of manufacture are described for down converting a peak emission wavelength of a pump LED within a subpixel with a quantum dot layer. In some embodiments, pump LEDs with a peak emission wavelength below 500 nm, such as between 340 nm and 420 nm are used. QD layers in accordance with embodiments can be integrated into a variety of display panel structures including a wavelength conversion cover arrangement, QD patch arrangement, or QD layers patterned on the display substrate.
Abstract:
Display panels and methods of manufacture are described for down converting a peak emission wavelength of a pump LED within a subpixel with a quantum dot layer. In some embodiments, pump LEDs with a peak emission wavelength below 500 nm, such as between 340 nm and 420 nm are used. QD layers in accordance with embodiments can be integrated into a variety of display panel structures including a wavelength conversion cover arrangement, QD patch arrangement, or QD layers patterned on the display substrate.
Abstract:
Systems and methods for transferring a micro device from a carrier substrate are disclosed. In an embodiment, a mass transfer tool includes an articulating transfer head assembly, a carrier substrate holder, and an actuator assembly to adjust a spatial relationship between the articulating transfer head assembly and the carrier substrate holder. The articulating transfer head assembly may include an electrostatic voltage source connection and a substrate supporting an array of electrostatic transfer heads.
Abstract:
Display panels and methods of manufacture are described for down converting a peak emission wavelength of a pump LED within a subpixel with a quantum dot layer. In some embodiments, pump LEDs with a peak emission wavelength below 500 nm, such as between 340 nm and 420 nm are used. QD layers in accordance with embodiments can be integrated into a variety of display panel structures including a wavelength conversion cover arrangement, QD patch arrangement, or QD layers patterned on the display substrate.
Abstract:
A conformable electronic device and methods for forming such devices are described. Embodiments of a conformable electronic device may include a silicon substrate having a thickness of 50 μm or less. An array of LEDs that are electrically coupled to a controller chip may be formed on a surface of the silicon substrate. In an embodiment, a top passivation layer is formed over the array of LEDs, the one or more controller chips, and the top surface of the silicon substrate. An embodiment also includes a bottom passivation layer formed on a bottom surface of the silicon substrate.
Abstract:
A method of transferring a micro device and an array of micro devices are disclosed. A carrier substrate carrying a micro device connected to a bonding layer is heated to a temperature below a liquidus temperature of the bonding layer, and a transfer head is heated to a temperature above the liquidus temperature of the bonding layer. Upon contacting the micro device with the transfer head, the heat from the transfer head transfers into the bonding layer to at least partially melt the bonding layer. A voltage applied to the transfer head creates a grip force which picks up the micro device from the carrier substrate.
Abstract:
A compliant bipolar micro device transfer head array and method of forming a compliant bipolar micro device transfer array from an SOI substrate are described. In an embodiment, a compliant bipolar micro device transfer head array includes a base substrate and a patterned silicon layer over the base substrate. The patterned silicon layer may include first and second silicon interconnects, and first and second arrays of silicon electrodes electrically connected with the first and second silicon interconnects and deflectable into one or more cavities between the base substrate and the silicon electrodes.
Abstract:
A compliant micro device transfer head and head array are disclosed. In an embodiment a micro device transfer head includes a spring portion that is deflectable into a space between a base substrate and the spring portion.
Abstract:
A display module and system applications including a display module are described. The display module may include a display substrate including a front surface, a back surface, and a display area on the front surface. A plurality of interconnects extend through the display substrate from the front surface to the back surface. An array of light emitting diodes (LEDs) are in the display area and electrically connected with the plurality of interconnects, and one or more driver circuits are on the back surface of the display substrate. Exemplary system applications include wearable, rollable, and foldable displays.