Abstract:
A packaging substrate and a semiconductor package using the packaging substrate are provided. The packaging substrate includes: a substrate body having a die attach area, a circuit layer formed around the die attach area and having a plurality of conductive traces each having a wire bonding pad, and a surface treatment layer formed on the wire bonding pads. Therein, only one of the conductive traces is connected to an electroplating line so as to prevent cross-talk that otherwise occurs between conductive traces due to too many electroplating lines in the prior art.
Abstract:
A package substrate having landless conductive traces is proposed, which includes a core layer with a plurality of plated through holes formed therein, and a plurality of conductive traces formed on at least a surface of the core layer. Each of the conductive traces has a connection end, a bond pad end, and a base body connecting the connection end and the bond pad end, the conductive trace is electrically connected to a corresponding one of the plated through holes through the connection end, and the connection end has a width greater than that of the base body but not greater than the diameter of the plated through hole, thereby increasing the contact area between the conductive trace and the plated through hole and preventing the contact surface of the conductive trace with the plated through hole from cracking.
Abstract:
A package substrate having landless conductive traces is proposed, which includes a core layer with a plurality of plated through holes formed therein, and a plurality of conductive traces formed on at least a surface of the core layer. Each of the conductive traces has a connection end, a bond pad end, and a base body connecting the connection end and the bond pad end, the conductive trace is electrically connected to a corresponding one of the plated through holes through the connection end, and the connection end has a width greater than that of the base body but not greater than the diameter of the plated through hole, thereby increasing the contact area between the conductive trace and the plated through hole and preventing the contact surface of the conductive trace with the plated through hole from cracking.
Abstract:
The present invention discloses a flip-chip semiconductor package and a chip carrier thereof. The chip carrier includes a groove formed around a chip-mounting area. The groove may be formed along a periphery of the chip-mounting area or at corners thereof. The groove is filled with a filler of low Young's modulus so as to absorb and eliminate thermal stress, thereby preventing delamination between an underfill and a flip chip mounted on the chip-mounting area.
Abstract:
A semiconductor package substrate is provided, which includes a substrate body having a plurality of conductive through holes formed therein, wherein at least two adjacent conductive through holes are formed as a differential pair, each of which has a ball pad formed at an end thereof; and at least one electrically integrated layer formed in the substrate body, and having an opening corresponding to the two adjacent conductive through holes formed as the differential pair and the ball pads thereof. Thus, the spacing between the conductive through holes and the electrically integrated layer and the spacing between the ball pads can be enlarged by the opening, so as to balance the impedance match.
Abstract:
A nickel/gold (Ni/Au) pad structure of a semiconductor package and a fabrication method thereof are provided. The fabrication method includes preparing a core layer; forming a conductive trace layer on the core layer; patterning the conductive trace layer to form at least one pad of the conductive trace layer; applying a conductive layer; forming a photoresist layer to define a predetermined plating region on the pad, wherein the predetermined plating region is smaller in area than the pad; forming a Ni/Au layer on the predetermined plating region; removing the photoresist layer and etching away the conductive layer; and applying a solder mask layer and forming at least one opening in the solder mask layer to expose the pad, wherein the opening is larger in area than the Ni/Au layer. The Ni/Au pad structure fabricated by the above method can prevent a solder extrusion effect incurred in the conventional technology.
Abstract:
A semiconductor package and a fabrication method thereof are provided in which a dielectric material layer formed with a plurality of openings is used and a solder material is applied into each of the openings. A first copper layer and a second copper layer are in turn deposited over the dielectric material layer and solder materials, and the first and second copper layers are patterned to form a plurality of conductive traces each of which has a terminal coated with a metal layer. A chip is mounted on the conductive traces and electrically connected to the terminals by bonding wires, with the dielectric material layer and solder materials being exposed to the outside. This package structure can flexibly arrange the conductive traces and effectively shorten the bonding wires, thereby improve trace routability and quality of electrical connection for the semiconductor package.
Abstract:
A semiconductor package and a fabrication method thereof are provided in which a dielectric material layer formed with a plurality of openings is used and a solder material is applied into each of the openings. A first copper layer and a second copper layer are in turn deposited over the dielectric material layer and solder materials, and the first and second copper layers are patterned to form a plurality of conductive traces each of which has a terminal coated with a metal layer. A chip is mounted on the conductive traces and electrically connected to the terminals by bonding wires, with the dielectric material layer and solder materials being exposed to the outside. This package structure can flexibly arrange the conductive traces and effectively shorten the bonding wires, thereby improve trace routability and quality of electrical connection for the semiconductor package.
Abstract:
A semiconductor package and a fabrication method thereof are provided in which a dielectric material layer formed with a plurality of openings is used and a solder material is applied into each of the openings. A first copper layer and a second copper layer are in turn deposited over the dielectric material layer and solder materials, and the first and second copper layers are patterned to form a plurality of conductive traces each of which has a terminal coated with a metal layer. A chip is mounted on the conductive traces and electrically connected to the terminals by bonding wires, with the dielectric material layer and solder materials being exposed to the outside. This package structure can flexibly arrange the conductive traces and effectively shorten the bonding wires, thereby improve trace routability and quality of electrical connection for the semiconductor package.
Abstract:
A cavity-down ball grid array (CDBGA) semiconductor package with a heat spreader is provided, in which a substrate is formed with at least a ground ring, a plurality of ground vias, a ground layer, and at least an opening for receiving at least a chip. The substrate is mounted in a cavity of the heat spreader, and an electrically conductive adhesive is disposed between an inner wall of the cavity and edges of the substrate, so as to allow the ground layer and the ground ring exposed to the edges of the substrate to be electrically connected to the heat spreader by means of the electrically conductive adhesive. By the above arrangement with the heat spreader being included in a grounding circuit path of the chip, ground floatation and excess ground inductance and resistance can be prevented for the semiconductor package, thereby solving heat-dissipation, electromagnetic interference and crosstalk problems.