Abstract:
Embodiments of the present disclosure describe devices, methods, computer-readable media and systems configurations for management and/or support of multimedia broadcast multicast service (MBMS) service in a wireless communications network. An evolved Node B (eNB) may transmit MBMS assistance information to a user equipment (UE). The MBMS assistance information may identify a carrier by which one or more upcoming MBMS services are to be provided and an indicator of a carrier selection mode to be used by the UE. The UE may transmit an MBMS interest indication message including information related to one or more targeted MBMS services which the UE wants to receive.
Abstract:
A system and method for configuring component carriers in carrier aggregation is disclosed. The method comprises communicating a carrier aggregation capability for a selected UE to an enhanced Node B (eNode B) configured to provide service for a plurality of UEs. A plurality of component carriers at the eNode B can be configured for the selected UE based on the carrier aggregation capability of the selected UE. A component carrier configuration message is broadcast from the eNode B containing component carrier configuration information that is common to the plurality of UEs. Specific configuration information that is specific to the selected UE is communicated using dedicated communication signaling. Selected configured component carriers are then activated by the eNode B for the selected UE. Activation can be based on the UE's quality of service needs, bandwidth needs, and strength of signal for the component carriers.
Abstract:
The various inventive embodiments relate to arrangement of information elements (IEs) for persistent and/or dynamic allocations in a wireless broadband network and include optimization techniques to eliminate the repetitive information fields from the downlink (DL)-Persistent-IEs, uplink (UL)-Persistent-IEs, DL-IEs, and UL-IEs. Elimination of repetitive information fields reduces MAP overhead. In addition embodiments relate to methods to use the same hybrid automatic repeat request (HARQ) region to contain persistent as well as non-persistent allocations. The use of the same HARQ region for persistent as well as non-persistent allocations further reduces the MAP overhead as it requires a single header to define the HARQ region instead of the two headers that are required to define two different HARQ regions: one for persistent allocation and the second one for non-persistent allocations.
Abstract:
Briefly, in accordance with one or more embodiments, a user equipment (UE) is configured to inform an evolved Universal Mobile Telecommunications System (UMTS) Terrestrial Radio Access Network (EUTRAN) that the UE will receive Multimedia Broadcast Multicast Services (MBMS) services on an MBMS carrier, switch from a primary serving cell to the MBMS carrier to receive MBMS services, and switch back to the primary serving cell after reception of the MBMS services from the MBMS carrier.
Abstract:
Systems and methods for providing opportunistic carrier aggregation to short range or low power extension carriers are generally disclosed herein. One embodiment includes data traffic offload techniques to offload data communicated in a Wireless Wide Area Network (WWAN) from a primary cell to a secondary cell. For example, the primary cell may be provided by a LTE/LTE-A base station operating in licensed spectrum, and the secondary cell may be provided by a low-power extension carrier operating in unlicensed spectrum using a LTE/LTE-A standard. The low-power extension carrier may be activated as needed to offload data transfers from the primary cell, in download-only, upload-only, and time-division LTE (TD-LTE) modes. Configurations involving multimode base stations, multi mode user equipment (UE), relay extension carriers, and remote radio equipment are also described herein, in conjunction with deployment of opportunistic carrier aggregation using extension carriers.
Abstract:
An apparatus may include a radio frequency (RF) transceiver to receive a first message over a first carrier in a first band in a downlink sub-frame of a first radio frame in a communications link, where the communications link comprises interband carriers aggregated over primary and secondary cells. The apparatus may also include a processor and a reply message assignment module operable on the processor to determine a downlink sub-frame in which the downlink transmission is received and to adjust timing of a reply/acknowledge message to be sent by the RF transceiver in response to the first message so as to coincide with a predetermined uplink sub-frame of a radio frame. Other embodiments are described and claimed.
Abstract:
Embodiments herein describe apparatuses, systems, and methods for signaling to support downlink coordinated multipoint (CoMP) communications with a user equipment (UE) in a wireless communication network. In embodiments, the UE may be configured with a plurality of channel state information (CSI) processes (e.g., via radio resource control (RRC) signaling) to use for providing CSI feedback to an evolved Node B (eNB) to support downlink CoMP communications. The UE may be configured with a plurality of sets of CSI processes. The UE may further receive a downlink control information (DCI) message from the eNB that indicates one of the configured sets of CSI processes on which the UE is to provide CSI feedback to the UE. The UE may generate the CSI feedback for the indicated set of CSI processes, and transmit the CSI feedback to the eNB in a CSI report.
Abstract:
An eNodeB operable to maintain timing advance groups (TAGs) in a heterogeneous network (HetNet) is disclosed. The eNodeB can form a timing advance group (TAG) for one or more serving cells when a same timing advance applies to the one or more serving cells. The eNodeB can map each of the one or more serving cells to the TAG using radio resource control (RRC) signaling from the eNodeB. The eNodeB can assign a timing advance group identifier (TAG ID) to the one or more serving cells mapped to the TAG. A separate timing advance timer can be maintained at a user equipment (UE) for each TAG for a selected period of time.
Abstract:
Generally, this disclosure provides apparatus and methods for improved indication of cell information in a wireless network. The cell information may include an evolved Node B (eNB) carrier type. The UE device may include a receiver circuit configured to receive a Radio Resource Control (RRC) message from an evolved Node B (eNB) of a serving cell, the RRC message comprising carrier information associated with the serving cell eNB; a processing circuit configured to extract, from the serving cell eNB carrier information: a carrier type, synchronization information and Radio Resource Management (RRM) measurement information; a synchronization circuit configured to synchronize the UE to the serving cell eNB based on the synchronization information associated with the serving cell eNB carrier information; and a signal measurement circuit configured to perform RRM signal measurements on the serving cell eNB based on the RRM measurement information associated with the serving cell eNB carrier information.
Abstract:
Systems and methods for controlling data traffic offload to a WLAN (e.g., a Wi-Fi network) from a WWAN (e.g., a 4G LTE network) are generally disclosed herein. One embodiment includes data traffic offload techniques managed by a Radio Resource Control (RRC) in a networked device including offloading data at the IP, PDCP, RLC, or MAC layers; another embodiment includes data traffic offload techniques managed by a MAC Scheduler with RRC control. Configurations for multimode user equipment (UE) and multimode base stations are also described herein, including configurations for implementing a Multiple Radio Access Technology (Multi-RAT) aggregation function to offload data from a WWAN to a WLAN and transmit the data via the WLAN using a Layer 2 transport.