摘要:
A hydrogen diffusion barrier in an integrated circuit is located to inhibit diffusion of hydrogen to a thin film of a metal oxide, such as a ferroelectric layered superlattice material, in an integrated circuit. The hydrogen diffusion barrier comprises at least one of the following chemical compounds: strontium tantalate, bismuth tantalate, tantalum oxide, titanium oxide, zirconium oxide and aluminum oxide. The hydrogen barrier layer is amorphous and is made by a MOCVD process at a temperature of 450° C. or less. A supplemental hydrogen barrier layer comprising a material selected from the group consisting of silicon nitride and a crystalline form of one of said hydrogen barrier layer materials is formed adjacent to said hydrogen diffusion barrier.
摘要:
A non-volatile SRAM memory comprising a plurality of memory cells, each memory cell including a SRAM memory cell portion and a ferroelectric memory cell portion including a ferroelectric element, the ferroelectric memory cell portion including a switch system for permitting the ferroelectric element to be isolated from the ferroelectric elements in all other memory cells.
摘要:
A ferroelectric memory (436) includes a plurality of memory cells (73, 82, 100) each containing a ferroelectric thin film (15) including a microscopically composite material having a ferroelectric component (18) and a dielectric component (19), the dielectric component being a different chemical compound than the ferroelectric component. The dielectric component is preferably a fluxor, i.e., a material having a higher crystallization velocity than the ferroelectric component. The addition of the fluxor permits a ferroelectric thin film to be crystallized at a temperature of between 400° C. and 550° C.
摘要:
A thin film of precursor for forming a layered superlattice material is applied to an integrated circuit substrate, then a strong oxidizing agent is applied at low temperature in a range of from 100° C. to 300° C. to the precursor thin film, thereby forming a metal oxide thin film. The strong oxidizing agent may be liquid or gaseous. An example of a liquid strong oxidizing agent is hydrogen peroxide. An example of a gaseous strong oxidizing agent is ozone. The metal oxide thin film is crystallized by annealing at elevated temperature in a range of from 500° C. to 700° C., preferably not exceeding 650° C., for a time period in a range of from 30 minutes to two hours. Annealing is conducted in an oxygen-containing atmosphere, preferably including water vapor. Treatment by ultraviolet (UV) radiation may precede annealing. RTP in a range of from 500° C. to 700° C. may precede annealing.
摘要:
An integrated circuit device includes a thin film of bismuth-containing layered superlattice material having a thickness not exceeding 100 nm, a capping layer thin film of bismuth tantalate, and an electrode. The capping layer has a thickness in a range of from 3 nm to 30 nm and is deposited between the thin film of layered superlattice material and the electrode to increase dielectric breakdown voltage. Preferably the capping layer contains an excess amount of bismuth relative to the stoichiometrically balanced amount represented by the balanced stoichiometric formula BiTaO4. Preferably, the layered superlattice material is ferroelectric SBT or SBTN. Preferably, the integrated circuit device is a nonvolatile ferroelectric memory. Heating treatments for fabrication of the integrated circuit device containing the bismuth tantalate capping layerare conducted at temperatures not exceeding 700° C., preferably in a range of from 650° C. to 700° C.
摘要:
A hydrogen diffusion barrier in an integrated circuit is located to inhibit diffusion of hydrogen to a thin film of metal oxide material in an integrated circuit. The hydrogen diffusion barrier comprises at least one of the following nitrides: aluminum titanium nitride (Al2Ti3N6), aluminum silicon nitride (Al2Si3N6), aluminum niobium nitride (AlNb3N6), aluminum tantalum nitride (AlTa3N6), aluminum copper nitride (Al2Cu3N4), tungsten nitride (WN), and copper nitride (Cu3N2). The thin film of metal oxide is ferroelectric or high-dielectric, nonferroelectric material. Preferably, the metal oxide comprises ferroelectric layered superlattice material. Preferably, the hydrogen barrier layer is located directly over the thin film of metal oxide.
摘要翻译:集成电路中的氢扩散阻挡层位于集成电路中以抑制氢扩散到金属氧化物材料的薄膜。 氢扩散阻挡层包括以下氮化物中的至少一种:氮化钛铝(Al 2 Ti 3 N 6),氮化硅铝(Al 2 Si 3 N 6),氮化铌(AlNb 3 N 6),氮化钽铝(AlTa 3 N 6),氮化铝铝(Al 2 Cu 3 N 4) (WN)和氮化铜(Cu3N2)。 金属氧化物的薄膜是铁电或高电介质非电介质材料。 优选地,金属氧化物包括铁电层状超晶格材料。 优选地,氢阻挡层位于金属氧化物的薄膜的正上方。
摘要:
A ferroelectric non-volatile memory in which each memory cell consists of a single electronic element, a ferroelectric FET. The FET includes a source, drain, gate and substrate. A cell is selected for writing or reading by application of bias voltages to the source, drain, gate or substrate. A gate voltage equal to one truth table logic value and a drain voltage equal to another truth table logic value are applied via a row decoder, and a substrate bias equal to a third truth table logic value is applied via a column decoder to write to the memory a resultant Ids logic state, which can be non-destructively read by placing a voltage across the source and drain.
摘要:
Metal organic precursor compounds are dissolved in an organic solvent to form a nonaqueous liquid precursor. The liquid precursor is applied to the inner envelope surface of a fluorescent lamp and heated to form a metal oxide thin film layer. The metal oxide thin film layer may be a conductor, a protective layer or provide other functions. The films have a thickness of from 20 nm to 500 nm. A conductive layer comprising tin-antimony oxide with niobium dopant may be fabricated to have a differential resistivity profile by selecting a combination of precursor composition and annealing temperatures.
摘要:
A mass flow controller controls the delivery of a precursor to a mist generator. The precursor is misted utilizing a venturi in which a combination of oxygen and nitrogen gas is charged by a corona wire and passes over a precursor-filled throat. The mist is refined using a particle inertial separator, electrically filtered so that it comprises predominately negative ions, passes into a velocity reduction chamber, and then flows into a deposition chamber through inlet ports in an inlet plate that is both a partition between the chambers and a grounded electrode. The inlet plate is located above and substantially parallel to the plane of the substrate on which the mist is to be deposited. The substrate is positively charged to a voltage of about 5000 volts. There are 440 inlet ports per square inch in an 39 square inch inlet port area of the inlet plate directly above the substrate. The inlet port area is approximately equal to the substrate area. An exhaust port defines a channel about the periphery of an exhaust plane parallel to and below the substrate plane.
摘要:
An integrated circuit non-volatile, non-destructive read-out memory unit includes a ferroelectric capacitor having first and second electrodes, a capacitance Cf, and an area Af, and a transistor having a gate, a source and a drain forming a gate capacitor having an area Ag and a gate capacitance Cg, a gate overlap b, and a channel depth a, with the capacitor first electrode connected to the gate of the transistor. The ferroelectric material has a dielectric constant .epsilon.f and the gate insulator has a dielectric constant .epsilon.g. A source of a constant reference voltage is connectable to the first electrode. A bit line connects to the second electrode. In one embodiment the first electrode and gate are the same conductive member. In another embodiment the second electrode and the gate are the same conductive member and the first electrode is formed by extensions of the transistor source and drains underlying the gate, with the ferroelectric material between the source and drain extensions and the gate. The memory unit has the parametric relationships: Cf