摘要:
A self-addressable, self-assembling microelectronic device is designed and fabricated to actively carry out and control multi-step and multiplex molecular biological reactions in microscopic formats. These reactions include nucleic acid hybridizations, antibody/antigen reactions, diagnostics, and biopolymer synthesis. The device can be fabricated using both microlithographic and micro-machining techniques. The device can electronically control the transport and attachment of specific binding entities to specific micro-locations. The specific binding entities include molecular biological molecules such as nucleic acids and polypeptides. The device can subsequently control the transport and reaction of analytes or reactants at the addressed specific micro-locations. The device is able to concentrate analytes and reactants, remove non-specifically bound molecules, provide stringency control for DNA hybridization reactions, and improve the detection of analytes. The device can be electronically replicated.
摘要:
The presence invention contemplates chromophore-containing polynucleotides having at least two donor chromophores operatively linked to the polynucleotide by linker arms, such that the chromophores are positioned by linkage along the length of the polynucleotide at a donor-donor transfer distance, and at least one fluorescing acceptor chromophore operatively linked to the polynucleotide by a linker arm, such that the fluorescing acceptor chromophore is positioned by linkage at a donor-acceptor transfer distance from at least one of the donor chromophores, to form a photonic structure for collecting photonic energy and transferring the energy to an acceptor chromophore.
摘要:
Fluorescent stokes shift probes for polynucleotide hybridization assays are designed to provide predetermined nucleotide base unit spacings between the donor and acceptor fluorophores. When the probes are hybridized to the target polynucleotide the fluorophores paired for non-radiative energy transfer are separated by 2 to 7 nucleotide base units. The fluorophores are attached to the DNA or RNA probes by linker arms having lengths of 4 to 30 Angstroms. Fluorescein is a preferred donor for use with a Texas Red acceptor.
摘要:
Binding assay methods involving determining the presence of analytes in samples through enzymatic formation of detectable substances in amounts related to the amount of analyte present in the sample and monitoring for the presence of the substances in distinct phases. Methods according to the invention include use of labelled materials which associate with the analyte to be determined or compete with the analyte for association with an added binder. The labelled materials employed include label portions which enzymatically form substances from substrates provided in or existing as a first phase, or, upon enzymatic treatment in a first phase, disassociate into substances capable of existing in or as a second distinct phase. Formation of the detectable substances is monitored by determining the transfer of the substance to a second distinct phase in contact with the first phase or by determining formation of a second distinct phase. The assays are useful in determining human IgG protein in blood samples and other constituents of blood or other biological samples without elaborate instrumentation, allowing for practice outside the clinical laboratory.
摘要:
Methods and apparatus are provided for the fabrication of microscale, including micron and sub-micron scale, including nanoscale, devices. Electronic transport of movable component devices is utilized through a fluidic medium to effect transport to a desired target location on a substrate or motherboard. Forces include electrophoretic force, electroosmotic force, electrostatic force and/or dielectrophoretic force. In the preferred embodiment, free field electroosmotic forces are utilized either alone, or in conjunction with, other forces. These forces may be used singly or in combination, as well as in conjunction with yet other forces, such as fluidic forces, mechanical forces or thermal convective forces. Transport may be effected through the use of driving electrodes so as to transport the component device to yet other connection electrodes. In certain embodiments, the component devices may be attached to the target device using a solder reflow step.
摘要:
Systems and methods for the electronic sample preparation of biological materials utilize the differential charge-to-mass ratio and/or the differential affinity of sample constituents to separation materials for sample preparation. An integrated system is provided for performing some or all of the processes of: receipt of biological materials, cell selection, sample purification, sample concentration, buffer exchange, complexity reduction and/or diagnosis and analysis. In one embodiment, one or more sample chambers adapted to receive a buffer solution are formed adjacent to a spacer region which may include a trap or other affinity material, electrophoretic motion of the materials to be prepared being effected through operation of electrodes. In another aspect of this invention, a transporter or dipstick serves to collect and permit transport of materials, such as nucleic acids, most preferably DNA and/or RNA. In one embodiment, a membrane or trap is held in a frame which is adapted to mate with a channel formed in the spacer region. In another aspect of this invention, an electrophoretic system for biological sample preparation is operated in a manner so as to utilize the differential charge-to-mass ratio so as to control the migration of materials within the solution. In one aspect, bunching of selected materials is achieved by operation of two electrodes in a manner so as to reduce the spatial dispersion of those materials. In another aspect of this invention, a vertically disposed sample preparation unit includes an upper reservoir including and a collection chamber. A sample is preferably pre-prepared and densified, applied to the conductive polymer, electrophoresed so as to move nucleic acids into the conductive polymer and move undesired material away from the conductive polymer. Integrated systems are described in which cell separation, purification, complexity reduction and diagnosis may be performed together. In the preferred embodiment, cell separation and sample purification are performed in a first region, the steps of denaturation, complexity reduction and diagnosis being performed in a second region.
摘要:
Methods and apparatus are provided for the fabrication of microscale, including micron, sub-micron, and nanoscale, devices. Electronic transport of movable component devices is utilized through a fluidic medium to effect transport to a desired target location on a substrate or motherboard. Forces include electrophoretic force, electroosmotic force, electrostatic force and/or dielectrophoretic force. In the preferred embodiment, free field electroosmotic forces are utilized either alone, or in conjunction with, other forces. These forces may be used singly or in combination, as well as in conjunction with yet other forces, such as fluidic forces, mechanical forces or thermal convective forces. Transport may be effected through the use of driving electrodes so as to transport the component device to yet other connection electrodes. In certain embodiments, the connection electrodes may also be utilized, either alone or in combination with driving electrodes, to electronically transport the component device to the connection electrodes.
摘要:
The present invention contemplates chromophore-containing polynucleotides having at least two donor chromophores operatively linked to the polynucleotide by linker arms, such that the chromophores are positioned by linkage along the length of the polynucleotide at a donor-donor transfer distance, and at least one fluorescing acceptor chromophore operatively linked to the polynucleotide by a linker arm, such that the fluorescing acceptor chromophore is positioned by linkage at a donor-acceptor transfer distance from at least one of the donor chromophores, to form a photonic structure for collecting photonic energy and transferring the energy to an acceptor chromophore, and methods using the photonic structures.