Abstract:
A number of different dynamic circuits having improved noise tolerance and a method for designing same are provided. The circuits include a power supply node and a precharge node. Keeper circuitry is connected to the nodes and has a current-voltage characteristic that exhibits a negative differential resistance property to improve noise tolerance of the circuits.
Abstract:
The invention provides a human cysteine proteases and polynucleotides which encode those proteases. The invention also provides expression vectors, host cells, antibodies, agonists, and antagonists, as well as methods for diagnosing, treating, or preventing disorders associated with aberrant expression of cysteine proteases.
Abstract:
The present invention relates to a device for preparing assay samples using a number of microscope slides. Each slide has a number of assay reaction surface locations spaced on the planar surface of the slide. In preferred embodiments, the device comprises, in part, a microscope slide holder that has the exterior dimensions of a SBS standard microplate, such as a 96 well plate. The device accepts conventional microscope slides equipped with sixteen microarray surfaces spaced nine millimeters apart on center, or four for a 96 well plate. Individual chamber plates are placed on top of the slides, creating an individual well above each assay reaction surface location. In preferred embodiments, each assay reaction surface location can comprise a microarray of multiple reactive sites. Thus, parallel processing can be done of samples for genomic or proteomic profiling. An advantage of the present invention is that one can use the conventional high throughput assaying equipment for SBS standard microplates while using conventional microscope slides, thereby allowing the use of robotic assay reading equipment designed for slides.
Abstract:
Various embodiments of the invention provide human nucleic acid-associated proteins (NAAP) and polynucleotides which identify and encode NAAP. Embodiments of the invention also provide expression vectors, host cells, antibodies, agonists, and antagonists. Other embodiments provide methods for diagnosing, treating, or preventing disorders associated with aberrant expression of NAAP.
Abstract:
The invention provides human transferases (TRNFR) and polynucleotides which identify and encode TRNFR. The invention also provides expression vectors, host cells, antibodies, agonists, and antagonists. The invention also provides methods for diagnosing, treating, or preventing disorders associated with aberrant expression of TRNFR.
Abstract:
A protective cosmetic particulate gel delivery system for a topically applied active agent employs an agar gel and a restraining polymer to retain the actve agent in the gel. The particles have an average particle diameter of at least 0.05 mm while the restraining polymer has a molecular weight of at least 50,000 daltons and has retention groups to bind the active agent. The restraining polymers can be selected from the group consisting of polyquaternium 24, laurdimonium hydroxyethylcellulose, cocodimonium hydroxyethylcellulose, steardimonium hydroxyethylcellulose, quaternary ammonium substituted water-soluble polysaccharides, alleyl quaternary celluloses and polypeptides having or provided with retention groups to retain the active agent. The gel particles of the invention are manually crushable on the skin to increase the surface area of the gel particle material and expose the restraining polymer to the skin or other body surface for release of the active agent. The delivery system can be incorporated in multiphase cosmetic formulations such as gels, creams and lotions.
Abstract:
A method for implementing a graphical modeling tool in a web-based environment is disclosed herein. In one embodiment, such a method may include enabling a user to import, into a web-based environment, a domain meta model comprising a number of meta model elements. The method may further enable the user to associate the meta model elements with graphical representations in the web-based environment, thereby allowing the user to create palette elements. The user may then assemble the palette elements on a canvas to create a diagram. This diagram may be converted into an instance of the domain meta model. This instance may be validated for conformance with the rules and constraints associated with the domain meta model. A corresponding apparatus and computer program product are also disclosed and claimed herein.
Abstract:
An embodiment of a method of testing software can include, as performed by at least one computing device, evaluating a first criterion for a plurality of software components, selecting a subset of the plurality of software components based on the evaluated first criterion, evaluating a second criterion for a plurality of test cases each defining a respective test to evaluate functionality of at least one of the software components, selecting a subset of the plurality of test cases based on the evaluated second criterion, and testing the selected subset of the plurality of software components utilizing the selected subset of the plurality of test cases.
Abstract:
A method for modifying the refractive index of an optical, hydrogel polymeric material. The method comprises irradiating predetermined regions of an optical, polymeric material with a laser to form refractive structures. To facilitate the formation of the refractive structures the optical, hydrogel polymeric material comprises a photosensitizer. The presence of the photosensitizer permits one to set a scan rate to a value that is at least fifty times greater than a scan rate without the photosensitizer in the material, yet provides similar refractive structures in terms of the observed change in refractive index. Alternatively, the photosensitizer in the polymeric material permits one to set an average laser power to a value that is at least two times less than an average laser power without the photosensitizer in the material, yet provide similar refractive structures.
Abstract:
The present invention relates generally to the field of ion storage and analysis, in particular to a linear ion trap mass analyzer comprised by multiple columnar electrodes. High frequency voltages are applied on at least one of the columnar electrodes to form ion confining space, which mainly consists of two-dimensional quadrupole electric radial trapping field, and there is at least one through slot for ion ejection in at least one direction perpendicular to the axis of the ion trap, wherein an AC electric field superposition is applied to invoke dipole excitation. Opposite to the through slot, there is an elongated electrode for field adjusting between two columnar electrodes or inside the slit of one of the columnar electrodes mentioned above. The potential on the elongated electrode for field adjusting is set as the sum of a portion of the high frequency voltage which applied on one adjacent columnar electrode and a DC offset, which can be adjusted freely. Through adjusting the portion of the high frequency potential and DC potential on this electrode, one or more objectives, including field optimization inside the ion trap as well as ion motion characteristics of resonant ejection, can be realized.