Abstract:
A cooling structure includes a first substrate layer including an array of cooling channels, a second substrate layer including a nozzle structure, an outlet manifold, and an outlet, a third substrate layer including an inlet, and inlet manifold, and one or more flow directing features are disposed within the inlet manifold. The one or more flow directing features include one or more micro-pillars extending into the cooling fluid flow path from the inlet manifold, the first substrate layer includes one or more first substrate layer through-holes, the second substrate layer includes one or more second substrate layer-through holes, and the third substrate layer includes one or more third-substrate layer through holes. The first substrate layer through-holes, the second substrate layer through-holes, and the third substrate layer through-holes are aligned into one or more TSVs and metallized.
Abstract:
Methods, systems, and apparatus for an electric vehicle. The system includes a battery control unit configured to be in a grid-connected mode or a stand-alone mode. The system includes a shared boost converter connected to a battery. The shared boost converter receives alternating current (AC) power, steps up voltage and converts the AC power to direct current (DC) power when the battery control unit is in the grid-connected mode. The shared boost converter receives DC power from the battery and steps up voltage when the battery control unit is in the stand-alone mode. The system also includes an inverter configured to receive the stepped up DC power when the battery control unit is in the stand-alone mode and convert the DC power to AC power. The system also includes a motor/generator connected to the inverter and configured to receive AC power for powering a drivetrain of the electric vehicle.
Abstract:
Heat transfer apparatuses and methods for directing heat transfer are disclosed. A heat transfer apparatus includes a vapor chamber having a first surface and a second surface where the first surface and the second surface define a chamber space and at least one of the first surface and the second surface includes a hydrophilic coating. The heat transfer apparatus also includes one or more first ultrasonic oscillators coupled to the first surface, one or more second ultrasonic oscillators coupled to the second surface, and a controller having a non-transitory, processor-readable storage medium storing programming instructions for selectively activating the one or more first ultrasonic oscillators or the one or more second ultrasonic oscillators based on an intended direction of heat flux.
Abstract:
A power electronics assembly having a semiconductor device stack having a wide bandgap semiconductor device, a first electrode electrically coupled the wide bandgap semiconductor device, and a second electrode electrically coupled the wide bandgap semiconductor device. A substrate layer is coupled to the semiconductor device stack such that the first electrode is positioned between the substrate layer and the wide bandgap semiconductor device. The substrate layer includes a substrate inlet port and a substrate outlet port. An integrated fluid channel system extends between the substrate inlet and outlet ports and includes a substrate fluid inlet channel extending from the substrate inlet port into the substrate layer, a substrate fluid outlet channel extending from the substrate outlet port into the substrate layer, and one or more semiconductor fluid channels extending into the wide bandgap semiconductor device in fluid communication with the substrate fluid inlet and outlet channels.
Abstract:
Two-phase jet impingement cooling devices and electronic device assemblies are disclosed. In one embodiment, a cooling device includes a manifold having a fluid inlet surface, a fluid outlet surface defining an outlet manifold, and a fluid outlet. The fluid inlet surface includes an inlet channel fluidly coupled to a first jet region and a second jet region each including a plurality of jet orifices and a plurality of surface features extending from the fluid inlet surface. A target plate is coupled to the fluid outlet surface of the manifold that includes a target surface, a first heat sink, and a second heat sink. A cover plate is coupled to the fluid inlet surface of the manifold, which includes a fluid inlet port fluidly coupled to the inlet channel of the manifold, and a fluid outlet port fluidly coupled to the fluid outlet of the manifold.
Abstract:
Two-phase cooling systems, power electronics modules, and methods for extending a maximum heat flux point of a two-phase cooling device are disclosed. In one embodiment, a method of operating a two-phase cooling device having an inlet, a chamber fluidly coupled to the inlet, and a heat transfer surface configured to receive heat flux from a heat generating device includes detecting at least one two-phase process parameter of the two-phase cooling device, and controlling a temperature of a coolant fluid at the inlet such that it is a first inlet temperature Tin1 when the at least one two-phase process parameter is less than a threshold. The method further includes controlling a temperature of the coolant fluid at the inlet such that it is a second inlet temperature Tin2, where Tin2 is less than Tin1.
Abstract:
Circuit boards and computer-implemented methods for designing circuit boards are disclosed. In one embodiment, a method of designing a circuit board having an insulator substrate includes determining, by a computer, a plurality of thermal conductor traces that is arranged to direct heat flux generated by a heat generating component away from a temperature sensitive component, and determining a plurality of electrical connection traces based on an input schematic. At least a portion of the plurality of electrical connection traces incorporate at least a portion of the plurality of thermal conductor traces to define a conductive trace pattern that electrically connects pins of two or more components located on the substrate. The conductive trace pattern includes the plurality of thermal conductor traces and the plurality of electrical connection traces. Disruption of the plurality of thermal conductor traces is avoided while determining the plurality of electrical connection traces.
Abstract:
Two-phase cooling systems, power electronics modules, and methods for extending a maximum heat flux point of a two-phase cooling device are disclosed. In one embodiment, a method of operating a two-phase cooling device having an inlet, a chamber fluidly coupled to the inlet, and a heat transfer surface configured to receive heat flux from a heat generating device includes detecting at least one two-phase process parameter of the two-phase cooling device, and controlling a temperature of a coolant fluid at the inlet such that it is e a first inlet temperature Tin1 when the at least one two-phase process parameter is less than a threshold. The method further includes controlling a temperature of the coolant fluid at the inlet such that it is a second inlet temperature Tin2, where Tin2 is less than Tin1.
Abstract:
A fuel cell may include a first fuel cell bipolar plate defining an air layer, a second fuel cell bipolar plate defining a hydrogen layer, and a coolant layer defined by the air layer and the hydrogen layer. The coolant layer includes a plurality of coolant microchannels that facilitate flow of a coolant. One or more support members are to extend between the air layer and the hydrogen layer to define one or more additional coolant flow paths between the air layer and the hydrogen layer.
Abstract:
A method, computer program product, and bipolar plate structure for a fuel cell stack inside a polymer-electrolyte-membrane (PEM) fuel cell stack. The bipolar plate structure may be created, wherein creating the bipolar plate structure may include forming a z-shaped pattern for a plurality of hydrogen flow channels. Creating the bipolar plate structure may include forming a z-shaped pattern for a plurality of air flow channels. Creating the bipolar plate structure may include forming an x-shaped crossing pattern for a plurality of coolant flow channels.