摘要:
The present invention relates to a novel method for fabricating a storage capacitor designed as a trench or a stacked capacitor and is used in particular in a DRAM memory cell. The method includes steps of forming a lower, metallic capacitor electrode, a storage dielectric and an upper capacitor electrode. The lower, metallic capacitor electrode is formed in a self-aligned manner on a silicon base material in such a way that uncovered silicon regions are first produced at locations at which the lower capacitor electrode will be formed, and then metal silicide is selectively formed on the uncovered silicon regions.
摘要:
A circuit arrangement includes a bit line (10), a reference bit line (12), a sense amplifier with two cross-coupled CMOS inverters, which in each case comprise an n-channel transistor (20, 22) and a p-channel field-effect transistor (30, 32), and also, at the respective source terminals, two voltage sources (40, 42), of which the voltage source (40) linked to the n-channel field-effect transistors can be driven from a lower through to an upper potential and the voltage source (42) linked to the p-channel field-effect transistors (30, 32) can be driven from the upper through to the lower potential. With this circuit arrangement, it is possible to store three different charge states in the memory cell (4) on the bit line (10) if the threshold voltages (UTH1, UTH2) at the transistors are chosen to be greater than half the voltage difference between the lower and upper voltage potentials. This can be achieved by production engineering or, for example, by changing the substrate bias voltage. The third charge state can be utilized for binary logic or for detecting a defect in the memory cell (4).
摘要:
Tungsten silicide layers are formed on a substrate and a semiconductor component has deep trench capacitors with a filling of tungsten silicide. The tungsten silicide layers are deposited on the substrate at a temperature of less than 400° C. and at a pressure of less than 10 torr from the vapor phase. The vapor phase hs a tungsten-containing precursor substance and a silicon-containing precursor substance. The molar ratio of the silicon-containing precursor compound to the tungsten-containing precursor compound in the vapor phase is selected to be greater than 500.
摘要:
Semiconductor devices having deep trenches with fill material therein having low resistivity are provided along with methods of fabricating such semiconductor devices.
摘要:
The integrated circuit configuration has at least one buried circuit element and an insulating layer. A multiplicity of insulating regions are in contact with one another to forming a locally delimited insulating layer in the substrate. In this way, trench capacitors implemented as buried circuit elements can be manufactured with a structure size of less than 100 nm in a simple and cost-effective manner.
摘要:
Semiconductor devices having necked semiconductor bodies and methods of forming semiconductor bodies of varying width are described. For example, a semiconductor device includes a semiconductor body disposed above a substrate. A gate electrode stack is disposed over a portion of the semiconductor body to define a channel region in the semiconductor body under the gate electrode stack. Source and drain regions are defined in the semiconductor body on either side of the gate electrode stack. Sidewall spacers are disposed adjacent to the gate electrode stack and over only a portion of the source and drain regions. The portion of the source and drain regions under the sidewall spacers has a height and a width greater than a height and a width of the channel region of the semiconductor body.
摘要:
Semiconductor devices having necked semiconductor bodies and methods of forming semiconductor bodies of varying width are described. For example, a semiconductor device includes a semiconductor body disposed above a substrate. A gate electrode stack is disposed over a portion of the semiconductor body to define a channel region in the semiconductor body under the gate electrode stack. Source and drain regions are defined in the semiconductor body on either side of the gate electrode stack. Sidewall spacers are disposed adjacent to the gate electrode stack and over only a portion of the source and drain regions. The portion of the source and drain regions under the sidewall spacers has a height and a width greater than a height and a width of the channel region of the semiconductor body.
摘要:
Methods and associated structures of forming a microelectronic device are described. Those methods may include forming a structure comprising a first contact metal disposed on a source/drain contact of a substrate, and a second contact metal disposed on a top surface of the first contact metal, wherein the second contact metal is disposed within an IID disposed on a top surface of a metal gate disposed on the substrate.
摘要:
Methods and associated structures of forming a microelectronic device are described. Those methods may include forming a tapered contact opening in an ILD disposed on a substrate, wherein a source/drain contact area is exposed, preamorphizing a portion of a source drain region of the substrate, implanting boron into the source/drain region through the tapered contact opening, forming a metal layer on the source/drain contact area, and then annealing the metal layer to form a metal silicide.
摘要:
A multi-component strain-inducing semiconductor region is described. In an embodiment, formation of such a strain-inducing semiconductor region laterally adjacent to a crystalline substrate results in a uniaxial strain imparted to the crystalline substrate, providing a strained crystalline substrate. In one embodiment, the multi-component strain-inducing material region comprises a first portion and a second portion which are separated by an interface. In a specific embodiment, the concentration of charge-carrier dopant impurity atoms of the two portions are different from one another at the interface.