Abstract:
One exemplary method includes providing a first polymer and a second polymer each comprising a first shape memory polymer backbone having at least one surface free side chain, the first polymer and the second polymer each transformable between a permanent shape and a temporary shape; creating an adhesive bond between the first polymer and the second polymer, wherein the creating of the adhesive bond transforms the first polymer to its temporary shape and transforms the second polymer to its temporary shape; and wherein the at least one surface free chain of the first polymer in its temporary shape is interdiffused with the at least one surface free chain of the second polymer in its temporary shape by the creation of the adhesive bond.
Abstract:
The present invention relates to a method for producing ductwork connecting components (1) preferably for air-handling systems. The essence of the invention lies in that providing a foam-related material made of chemically cross-linked polyolefine with closed cell-structure, preparing the pattern (4) of a connecting component from a foam-sheet of polyolefine, cutting out the pattern and forming the final shape of the connecting component by welding the corresponding edges. The present invention relates further on to connecting components prepared according to the method of the invention. The invention also relates to an air-handling system using the connecting components of the invention.
Abstract:
Hot melt adhesives include a thermoplastic terpolymer of vinylidene fluoride, tetrafluoro ethylene and hexafluoropropylene and a terpolymer of glycidyl methacrylate, ethylene and an acrylic ester. The adhesives will bond well to a variety of substrates, in particular substrates of very low surface energy such as polytetrafluoroethylene (PTFE).
Abstract:
The present invention encompasses a golf ball having a diameter and being comprised of a core and a cover, wherein the core is further comprised of a fluid mass at the center of the ball, and a first, solid, non-wound mantle layer surrounding the fluid mass, wherein the first mantle layer comprises a copolymer or terpolymer of ethylene and an α,β-unsaturated carboxylic acid, the acid being neutralized at least 80% by a salt of an organic acid, a cation source, or a suitable base of the organic acid, and wherein the cover comprises polyurethane, polyurea, or a polyurea/polyurethane hybrid. Preferably, the rate of spin decay is at least 10% of an initial spin rate of the golf ball over the entire ball flight.
Abstract:
A connection between composites (10, 12) with non-compatible properties and a method of preparing of such connections are provided. The composites comprise first and second type fibres, respectively, as well as resin. The connection comprises a transition zone (52) between the composites (10, 12) having a layered structure. The transition zone may optionally comprise a transition member and the transition member may optionally be integrated with one or more of the composites. Examples of non-compatible properties where the present connection will be appreciated are great differences in stiffness, e.g. Young's modulus, or in coefficient of thermal expansion.
Abstract:
A frangible fiberglass insulation batt includes a pair of fiberglass strips arranged to lie in side-by-side relation to one another and a frangible adhesive bridge spanning a gap between the fiberglass strips and retaining the fiberglass strips in side-by-side relation. To produce such a batt, a fiberglass insulation blanket is cut along its length to form two side-by-side fiberglass strips and then an adhesive material is applied to form a frangible adhesive bridge between the strips.
Abstract:
A method for bonding a plurality of non-magnetic members includes the steps of (1) mating the non-magnetic members via an uncured adhesive interposed between their surfaces to be bonded; (2) applying pressure to their mated portions between a pressing magnet jig and a pressure-receiving, soft-magnetic jig; and (3) curing the adhesive while applying pressure.
Abstract:
The present invention encompasses a golf ball having a diameter and being comprised of a core and a cover, wherein the core is further comprised of a fluid mass at the center of the ball, a first mantle layer surrounding the fluid mass and a second, solid, non-wound mantle layer surrounding and abutting the first mantle layer, wherein the first mantle layer comprises a polymer material selected from the group consisting of a thermoset rubber, plastic and thermoplastic elastomeric material and the second mantle layer comprises a polymer material selected from the group consisting of a thermoset rubber material and thermoplastic elastomeric material, and wherein the cover comprises polyurethane, polyurea, or a polyurea/polyurethane hybrid.
Abstract:
A sealing sheet (10) assembly bondable to a construction surface comprising (a) an upper layer (14) of a first substance, the upper layer being selected fluid impermeable; and (b) a lower flexible layer (16) of a second substance, the lower flexible layer being bondable to the construction surface. The upper layer and the lower flexible layer are at least partially attached to one another, wherein a combination of the upper layer, the lower layer and the attachment or the partial attachment of the layers to one another are selected such that tensile forces resulting from constructional movements acting upon the sealing sheet result in a local detachment or relative displacement of the upper layer and the lower flexible layer, thereby the ability of the lower flexible layer of transmitting the forces onto the upper layer is remarkably reduced, resulting in improved service of the sealing cover as a whole. The attachment is selected such that a spread of a leakage between the layers via a tear formed in the upper layer is locally restricted.
Abstract:
The present invention relates to a microdevice for separating the components of a fluid sample. A cover plate is arranged over the first surface of a substrate, and, in combination with a microchannel formed in the first surface, defines a separation conduit for separating the components of the fluid sample. A sample inlet port in fluid communication with the conduit allows a fluid sample introduced from a sample source to be conveyed in a defined sample flow path such that the sample fluid travels, in order, through the sample inlet port, the separation conduit and a sample outlet port. The microdevice also includes an integrated introducing means for controllably introducing a volume of the fluid sample from a sample source into the sample inlet port and through the separation conduit. A method for separating the components of a fluid sample using the microdevice is also provided.