Abstract:
A method for producing a thermoplastic elastomer composition comprising using a twin screw kneader to melt-knead a thermoplastic resin and an elastomer; the twin screw kneader having at least two raw material inlets including a first raw material inlet and a second raw material inlet provided at a position separated by 15 D to 38 D on a downstream side from the first raw material inlet, where D is a cylinder inside diameter of the twin screw kneader; the elastomer being fed in a divided manner from the first and second raw material inlets; a proportion of the elastomer fed from the second raw material inlet being from 10 to 60 vol % of a total amount of the elastomer; and the elastomer being melt-kneaded in a kneading zone having a length of from 0.5 D to 20 D in a cylinder axis direction of the twin screw kneader.
Abstract:
A concealable film including 10 to 94% by mass of a crystalline polyamide resin, 1 to 40% by mass of an amorphous polyamide resin and 5 to 50% by mass of titanium oxide, with the proviso that the total content of these is 100% by mass.
Abstract:
A fastening component is a molded article of a mixture in which microfibrillated cellulose fibers are dispersed in a thermoplastic resin, wherein the thermoplastic resin has a melting point of between 150 and 200° C., and wherein when the total mass % of the thermoplastic resin and the cellulose fibers is set to be 100 mass %, the mass % of the cellulose fibers included in the mixture is greater than 20 mass % and less than 60 mass %. When the total mass % of the thermoplastic resin and the cellulose fibers is set to be 100%, the mass % of the cellulose fibers included in the mixture is preferably equal to or greater than 30 mass % and equal to or less than 50 mass %.
Abstract:
The present invention comprises methods and compositions for antimicrobial silver compositions comprising silver nanoparticles. The present invention further comprises compositions for preparing silver nanoparticles comprising at least one stabilizing agent, one or more silver compounds, at least one reducing agent and a solvent. In one aspect, the stabilizing agent comprises a surfactant or a polymer. The polymer may comprise polymers such as polyacrylamides, polyurethanes, and polyamides. In one aspect, the silver compound comprises a salt comprising a silver cation and an anion. The anion may comprise saccharinate derivatives, long chain fatty acids, and alkyl dicarboxylates. The methods of the present invention comprise treating devices with the silver nanoparticle compositions, including, but not limited to, such devices as woven wound care materials, catheters, patient care devices, and collagen matrices. The present invention further comprises treatment of humans and animals wacr6ith the antimicrobial devices described herein.
Abstract:
[Object] To provide a resin composition with excellent mold releasability and blocking resistance.[Solution] A resin composition containing a 4-methyl-1-pentene polymer includes 0.01 to 10 parts by mass of a 4-methyl-1-pentene polymer (B) per 100 parts by mass of at least one resin (A) selected from the group consisting of thermoplastic resins and thermosetting resins, wherein the 4-methyl-1-pentene polymer (B) has (B1) an intrinsic viscosity [η] of 0.01 or more but less than 0.50 dl/g measured at 135° C. in a decalin solvent.
Abstract translation:提供具有优异的脱模性和抗粘连性的树脂组合物。 [解决方案]含有4-甲基-1-戊烯聚合物的树脂组合物,相对于所选择的至少一种树脂(A),相对于每100质量份的所述4-甲基-1-戊烯类聚合物(B),含有0.01〜10质量份的4-甲基-1-戊烯类聚合物 由热塑性树脂和热固性树脂组成的组合物,其中4-甲基-1-戊烯聚合物(B)的特性粘度[ηe]为135°时测得的0.01或更大但小于0.50dl / g C.在十氢化萘溶剂中。
Abstract:
Provided are a fiber-reinforced composite material capable of achieving excellent CAI, ILSS, and bending fracture toughness concurrently at high levels, and maintaining a high glass transition temperature of the resin material therein, and prepreg and a benzoxazine resin composition therefor. The composition contains, at a particular ratio, (A) a compound having in its molecule a benzoxazine ring represented by formula (1), (B) an epoxy resin, (C) a curing agent, (D) a toughness improver, and (E) polyamide 12 particles of a particular particle size, and component (D) is dissolved: (R1: C1-C12 chain alkyl group or the like, and H is bonded to at least one of Cs of the aromatic ring at o- or p-position with respect to the carbon atom to which the oxygen atom is bonded).
Abstract:
A masterbatch pellet is provided for obtaining a polyamide resin composition excellent in mechanical strength and heat aging resistance. The masterbatch pellet is obtained by melt-kneading a raw material component containing a thermoplastic resin (A) and a metal oxide (B), wherein a content of the metal oxide (B) is 0.5% by mass or more and a fraction of the metal oxide (B) after the melt kneading is present as an aggregated particle of 5 μm or more in a major axis length. A proportion of the aggregated particle of 5 μm or more in a major axis length in a whole metal oxide after the melt kneading is preferably 30% by mass or less.
Abstract:
A thermally conductive filler composition and a resin composition comprising such filler compositions. The filler composition comprises a blend of a boron nitride, a metal oxide, and a silane. The filler composition can further comprise other filler components including, for example, glass fiber or glass flake. The filler compositions can be added to a resin composition to provide a thermally conductive resin such as, for example, a thermally conductive plastic.
Abstract:
The instant invention provides reinforced microcapillary films and/or foams. The inventive reinforced film and/or foam have a first end and a second end, wherein the film and/or foam comprises: (a) a matrix comprising a first thermoplastic material, (b) at least one or more channels disposed in parallel in said matrix from the first end to the second end of the film or foam, wherein said one or more channels are at least 1 μm apart from each other, and wherein each said one or more channels have a diameter in the range of at least 1 μm; and (c) a second thermoplastic material disposed in said one or more channels, wherein said second thermoplastic material is different than the first thermoplastic material; wherein said film has a thickness in the range of from 2 μm to 2000 μm.
Abstract:
Processes and compounds are described herein for single polymer composites based on a process for making the single polymer composites that includes the steps of heating a matrix material to create polymer melt, cooling the polymer melt to below its Tm to create an undercooled polymer melt, or quasi-melt, and combining the melt with an enhancing or reinforcing material to produce a single polymer composite. The process can produce materials that do not have any degradation of the polymer characteristic of the enhancing material due to melting of the polymer in the enhancing material.