Abstract:
One example electronic assembly includes a substrate that has a plurality of contacts which become bonded to a plurality of contacts on a die. The electronic assembly further includes a male member that extends from at least one of the substrate and the die and a female member that extends from the other of the substrate and the die. The male member is inserted into the female member to align the die relative to the substrate. The male member and the female member may have any configuration as long as one or more portions of the male member extend partially, or wholly, into the female member. An example method includes aligning a die relative to a substrate by inserting a male member that extends from one of the die and the substrate into a female member that extends from the other of the die and the substrate.
Abstract:
In some embodiments, a T-shaped heat spreader may be provided centrally within a folded stacked chip-scale package. The dice may be situated around the T-shaped heat spreader which may be made of high conductivity material. Heat may be dissipated through the T-shaped spreader 24 and downwardly through thermal vias into a printed circuit board.
Abstract:
A microelectronic package and a method of forming the same comprising a microelectronic device attached by an active surface to a substrate. A heat dissipation device having a base portion is positioned over a back surface of the microelectronic device and having at least one lip portion extending from the base portion which is attached to the substrate. An inlet extends through the heat dissipation device base portion and is positioned to be over the microelectronic device back surface. A thermal interface material is dispensed through the inlet and by capillary action is drawn between the microelectronic device back surface and the heat dissipation device base portion.
Abstract:
One example electronic assembly includes a substrate that has a plurality of contacts which become bonded to a plurality of contacts on a die. The electronic assembly further includes a male member that extends from at least one of the substrate and the die and a female member that extends from the other of the substrate and the die. The male member is inserted into the female member to align the die relative to the substrate. The male member and the female member may have any configuration as long as one or more portions of the male member extend partially, or wholly, into the female member. An example method includes aligning a die relative to a substrate by inserting a male member that extends from one of the die and the substrate into a female member that extends from the other of the die and the substrate.
Abstract:
A substrate is provided that may include an area designated for mounting of an integrated circuit and one or more areas for retaining a thermal interface material proximate the integrated circuit mounting area. A thermal interface material containment area(s) may be formed by creating a through-hole in the substrate, or a recess in the substrate that opens either to the die placement side or the opposite side of the substrate.
Abstract:
Contact pin temperature of a semiconductor package is reduced by forcing air into a region between a circuit board and a socket body. A sealant around the perimeter of the socket body at least in part seals the socket body with the circuit board, allowing the forced gas to flow through cavities containing the contacts, thereby cooling the contacts and the package pins. The contact-pin temperature may be reduced, allowing power pins to carry more current. Accordingly, microprocessors and processing systems may be operated at higher data rates without reducing reliability or increasing contact-pin oxidation.
Abstract:
A microelectronic die assembly including a heat dissipation device serving as a support structure for the assembly is described. A first microelectronic die is attached by a back surface to a first surface of the heat dissipation device. A first plurality of interconnects are disposed on an active surface of the first microelectronic die. A second microelectronic die is attached by a back surface to the first microelectronic die active surface. A second plurality of interconnects are disposed on an active surface of the second microelectronic die. Any appropriate number of microelectronic dice may be stacked in a like fashion.
Abstract:
A microelectronic package and a method of forming the same comprising a microelectronic device attached by an active surface to a substrate. A heat dissipation device having a base portion is positioned over a back surface of the microelectronic device and having at least one lip portion extending from the base portion which is attached to the substrate. An inlet extends through the heat dissipation device base portion and is positioned to be over the microelectronic device back surface. A thermal interface material is dispensed through the inlet and by capillary action is drawn between the microelectronic device back surface and the heat dissipation device base portion.
Abstract:
A socket comprises a socket body having a bottom surface at which the socket can be mounted to a motherboard, a top surface, and several side surfaces. The top surface has an array of electrical contacts at which a package containing a microprocessor can be coupled to the socket. One or more of the side surfaces have a slot, which includes an electrical interface at which a circuit card containing cache memory for use by the microprocessor can be removably inserted into the socket body parallel to the motherboard.
Abstract:
The present invention describes a method and apparatus for mounting a microelectronic device parallel to a substrate with an interposer and two heat sinks, one on each side of the substrate.