摘要:
A semiconductor device and method of manufacturing are provided that include forming an electrically conductive bump on a substrate and forming at least one passivation layer on the bump to reduce solder joint failures.
摘要:
Warpage and breakage of integrated circuit substrates is reduced by compensating for the stress imposed on the substrate by thin films formed on a surface of the substrate. Particularly advantageous for substrates having a thickness substantially less than about 150 μm, a stress-tuning layer is formed on a surface of the substrate to substantially offset or balance stress in the substrate which would otherwise cause the substrate to bend. The substrate includes a plurality of bonding pads on a first surface for electrical connection to other component.
摘要:
Warpage and breakage of integrated circuit substrates is reduced by compensating for the stress imposed on the substrate by thin films formed on a surface of the substrate. Particularly advantageous for substrates having a thickness substantially less than about 150 μm, a stress-tuning layer is formed on a surface of the substrate to substantially offset or balance stress in the substrate which would otherwise cause the substrate to bend. The substrate includes a plurality of bonding pads on a first surface for electrical connection to other component.
摘要:
Warpage and breakage of integrated circuit substrates is reduced by compensating for the stress imposed on the substrate by thin films formed on a surface of the substrate. Particularly advantageous for substrates having a thickness substantially less than about 150 μm, a stress-tuning layer is formed on a surface of the substrate to substantially offset or balance stress in the substrate which would otherwise cause the substrate to bend. The substrate includes a plurality of bonding pads on a first surface for electrical connection to other component.
摘要:
A method and system is disclosed for better packaging semiconductor devices. In one example, a semiconductor device package comprises a package substrate, at least one die with an orientation of placed on the substrate with electrical connections made between the package substrate and the die, and an underfill fillet attaching the die to the substrate with the underfill fillet reaching less than 60% of a thickness of the die on at least one side thereof.
摘要:
An isolation structure for electromagnetic interference includes a semiconductor substrate, a first integrated circuit in the semiconductor substrate, a second integrated circuit in the semiconductor substrate, and an isolation structure in a direct path between the first and the second integrated circuits, wherein the isolation structure comprises a through-silicon via.
摘要:
A silicon-based thin package substrate is used for packaging semiconductor chips. The silicon-based thin package substrate preferably has a thickness of less than about 200 μm. A plurality of through-hole vias are formed in the silicon-based thin package substrate, connecting BGA balls and solder bumps. The silicon-based thin package substrate may be used as a carrier of semiconductor chips.
摘要:
A semiconductor device includes a semiconductor substrate having top and bottom surfaces, the top surface having at least one device region thereon. At least one trench opening is formed through the substrate from the bottom surface and connecting to the device region. A layer of conductive material is deposited in the at least one trench opening and partially fills the trench opening. A layer of conductive adhesive is deposited over the layer of conductive material and fills a remaining portion of the trench opening.
摘要:
A method of cutting an integrated circuit chip from a wafer having a plurality of integrated circuit chips is provided. An upper portion of the wafer is ablated using two laser beams to form two substantially parallel trenches that extend into the wafer from a top surface of the wafer through intermetal dielectric layers and at least partially into a substrate of the wafer. After the ablating to form the two trenches, cutting through the wafer between outer sidewalls of the two laser-ablated trenches with a saw blade is performed. A width between the outer sidewalls of the two laser-ablated trenches is greater than a cutting width of the saw blade. This may be particularly useful in lead-free packaging applications and/or applications where the intermetal dielectric layers use low-k dielectric materials, for example.