Abstract:
Reducing liner corrosion during metallization of semiconductor devices at BEOL includes providing a starting metallization structure, the structure including a bottom layer of dielectric material with a via therein, a liner lining the via and extending over upper edges thereof, the lined via over filled with a conductive material, recessing the conductive material down to the liner, further selectively recessing the conductive material below the upper edges of the via without damaging the liner, and forming a cap of the liner material on the conductive material.
Abstract:
A semiconductor structure includes a semiconductor substrate, fins coupled to the substrate and surrounded at a bottom portion thereof by isolation material, and resistor(s) situated in the gate region(s), the gate regions being filled with undoped dummy gate material. As part of a replacement gate process, the resistor(s) are realized by forming silicide over dummy gate material, i.e., the dummy gate material for the resistor(s) is not removed.
Abstract:
A method includes forming a line feature above a substrate. Carbon-containing spacers are formed on sidewalls of the line feature. A first dielectric layer is formed above the carbon spacers and the line feature. The first dielectric layer is planarized to expose upper ends of the carbon-containing spacers. An ashing process is performed to remove the carbon-containing spacers and define air gaps adjacent the line feature. A cap layer is formed to seal the upper ends of the air gaps.
Abstract:
A method for flowable oxide deposition is provided. An oxygen source gas is increased as a function of time or film depth to change the flowable oxide properties such that the deposited film is optimized for gap fill near a substrate surface where high aspect ratio shapes are present. The oxygen gas flow rate increases as the film depth increases, such that the deposited film is optimized for planarization quality at the upper regions of the deposited film.
Abstract:
A method includes forming a line feature above a substrate. Carbon-containing spacers are formed on sidewalls of the line feature. A first dielectric layer is formed above the carbon spacers and the line feature. The first dielectric layer is planarized to expose upper ends of the carbon-containing spacers. An ashing process is performed to remove the carbon-containing spacers and define air gaps adjacent the line feature. A cap layer is formed to seal the upper ends of the air gaps.
Abstract:
Integrated circuits and methods of forming integrated circuits are provided. A method of forming an integrated circuit includes providing a substrate that includes an electrical contact disposed therein. A first dielectric layer is formed over the substrate and electrical contact. A metal-containing layer is patterned over the first dielectric layer, with at least a first portion of the patterned metal-containing layer disposed over the first dielectric layer. The patterned metal-containing layer is absent in regions of the first dielectric layer over the electrical contact. A second dielectric layer is formed over the patterned metal-containing layer. A first via is etched in the first dielectric layer and the second dielectric layer over the electrical contact, and a second via is etched in the second dielectric layer over the patterned metal-containing layer. The first via and the second via are filled with an electrically-conductive material.
Abstract:
Achieving a critical dimension target for a feature based on characteristics of a resist is facilitated. Mask data is established for fabricating a lithographic mask to expose different regions of a resist to high, low, and intermediate exposure levels. The resist is configured to exhibit high solubility when exposed to the high or low exposure level, and low solubility when exposed to the intermediate exposure level. A critical dimension for a region of the resist to be exposed to the intermediate exposure level is determined, and the mask data is established to indicate opaque regions for forming on the lithographic mask. The opaque regions are arrayed to facilitate exposing the region of the resist to the intermediate exposure level, to achieve the determined critical dimension. Further, a method is provided for forming in-situ a patterned mask from a mask layer above a substrate material.
Abstract:
Methods are provided for dimension-controlled via formation over a circuit structure, including over multiple adjacent conductive structures. The method(s) includes, for instance, providing a patterned multi-layer stack structure above the circuit structure, the stack structure including at least one layer, and a pattern transfer layer above the at least one layer, the pattern transfer layer being patterned with at least one via opening; providing a sidewall spacer layer within the at least one via opening to form at least one dimension-controlled via opening; and etching through the at least one layer of the stack structure using the at least one dimension-controlled via opening to facilitate providing the via(s) over the circuit structure. In one implementation, the stack structure includes a trench-opening within a patterned hard mask layer disposed between a dielectric layer and a planarization layer, and the via(s) is partially self-aligned to the trench.
Abstract:
Integrated circuits with tungsten components having a smooth surface and methods for producing such integrated circuits are provided. A method of producing the integrated circuits includes forming a nucleation layer overlying a substrate and within a cavity, where the nucleation layer includes tungsten. A nucleation layer thickness is reduced, and a fill layer if formed overlying the nucleation layer.
Abstract:
A semiconductor structure with mixed n-type and p-type non-planar transistors includes a residual overlapping mask bump on one or more of the dummy gates. A dielectric layer is created over the structure having a top surface above the residual bump, for example, using a blanket deposition and chemical-mechanical underpolish (i.e., stopping before exposing the gate cap). The residual bump is then transformed into a same material as the dielectric, either in its entirety and then removing the combined dielectric, or by removing the dielectric first and partly removing the residual bump, the remainder of which is then transformed and the dielectric removed. In either case, the structure is planarized for further processing.