Abstract:
This disclosure provides (a) methods of making an oxide layer (e.g., a dielectric layer) based on titanium oxide, to suppress the formation of anatase-phase titanium oxide and (b) related devices and structures. A metal-insulator-metal (“MIM”) stack is formed using an ozone pretreatment process of a bottom electrode (or other substrate) followed by an ALD process to form a TiO2 dielectric, rooted in the use of an amide-containing precursor. Following the ALD process, an oxidizing anneal process is applied in a manner is hot enough to heal defects in the TiO2 dielectric and reduce interface states between TiO2 and electrode; the anneal temperature is selected so as to not be so hot as to disrupt BEL surface roughness. Further process variants may include doping the titanium oxide, pedestal heating during the ALD process to 275-300 degrees Celsius, use of platinum or ruthenium for the BEL, and plural reagent pulses of ozone for each ALD process cycle. The process provides high deposition rates, and the resulting MIM structure has substantially no x-ray diffraction peaks associated with anatase-phase titanium oxide.
Abstract:
Methods for producing RRAM resistive switching elements having reduced forming voltage include doping to create oxygen deficiencies in the dielectric film. Oxygen deficiencies in a dielectric film promote formation of conductive pathways.
Abstract:
Selector devices that can be suitable for memory device applications can have low leakage currents at low voltages to reduce sneak current paths for non selected devices, and high leakage currents at high voltages to minimize voltage drops during device switching. In some embodiments, the selector device can include a first electrode, a tri-layer dielectric layer, and a second electrode. The tri-layer dielectric layer can include a high leakage dielectric layer sandwiched between two lower leakage dielectric layers. The low leakage layers can function to restrict the current flow across the selector device at low voltages. The high leakage dielectric layer can function to enhance the current flow across the selector device at high voltages.
Abstract:
Combinatorial workflow is provided for evaluating materials and processes for current selector devices in a cross point memory array. Blanket layers, metal-insulator-metal devices, and compete memory structures are combinatorially fabricated on multiple regions of a substrate, with each region having a different material and process condition for the current selector devices. The current selector devices are then characterized, and the data are compared to obtain the optimum materials and processes.
Abstract:
A first electrode layer for a Metal-Insulator-Metal (MIM) DRAM capacitor is formed wherein the first electrode layer contains a conductive base layer and conductive metal oxide layer. The dielectric layer may include zirconium oxide or doped zirconium oxide. In some embodiments, the conductive metal oxide layer includes niobium oxide.
Abstract:
Embodiments of the invention generally relate to nonvolatile memory devices and methods for manufacturing such memory devices. The methods for forming improved memory devices, such as a ReRAM cells, provide optimized, atomic layer deposition (ALD) processes for forming a metal oxide film stack which contains at least one hard metal oxide film (e.g., metal is completely oxidized or substantially oxidized) and at least one soft metal oxide film (e.g., metal is less oxidized than hard metal oxide). The soft metal oxide film is less electrically resistive than the hard metal oxide film since the soft metal oxide film is less oxidized or more metallic than the hard metal oxide film. In one example, the hard metal oxide film is formed by an ALD process utilizing ozone as the oxidizing agent while the soft metal oxide film is formed by another ALD process utilizing water vapor as the oxidizing agent.
Abstract:
Resistive-switching memory elements having improved switching characteristics are described, including a memory element having a first electrode and a second electrode, a switching layer between the first electrode and the second electrode comprising hafnium oxide and having a first thickness, and a coupling layer between the switching layer and the second electrode, the coupling layer comprising a material including metal titanium and having a second thickness that is less than 25 percent of the first thickness.
Abstract:
A method for reducing the leakage current in DRAM MIM capacitors comprises forming a multi-layer dielectric stack from an amorphous highly doped material, an amorphous high band gap material, and a lightly-doped or non-doped material. The highly doped material will remain amorphous (
Abstract:
A zirconium oxide based dielectric material is used in the formation of decoupling capacitors employed in microelectronic logic circuits. In some embodiments, the zirconium oxide based dielectric is doped. In some embodiments, the dopant includes at least one of aluminum, silicon, or yttrium. In some embodiments, the zirconium oxide based dielectric is formed as a nanolaminate of zirconium oxide and a dopant metal oxide.
Abstract:
Embodiments of the invention include nonvolatile memory elements and memory devices comprising the nonvolatile memory elements. Methods for forming the nonvolatile memory elements are also disclosed. The nonvolatile memory element comprises a first electrode layer, a second electrode layer, and a plurality of layers of an oxide disposed between the first and second electrode layers. One of the oxide layers has linear resistance and substoichiometric composition, and the other oxide layer has bistable resistance and near-stoichiometric composition. Preferably, the sum of the two oxide layer thicknesses is between about 20 Å and about 100 Å, and the oxide layer with bistable resistance has a thickness between about 25% and about 75% of the total thickness. In one embodiment, the oxide layers are formed using reactive sputtering in an atmosphere with controlled flows of argon and oxygen.