Abstract:
A current flattening circuit, a current compensation circuit and associated control method are provided. The current flattening circuit is electrically connected to a core node, and includes a reference voltage regulator and the current compensation circuit. The reference voltage regulator generates a reference voltage, wherein the reference voltage is constant. The current compensation circuit is electrically connected to the core node and the reference voltage regulator. The current compensation circuit generates a compensation current according to a potential difference between the reference voltage and a core voltage corresponding to the core node.
Abstract:
A system and method for utilizing a security key stored in non-volatile memory, and for generating a PUF-based data set on an integrated circuit including non-volatile memory cells, such as flash memory cells, are described. The method includes storing a security key in a particular block in a plurality of blocks of the non-volatile memory array; utilizing, in a security logic circuit coupled to the non-volatile memory array, the security key stored in the particular block in a protocol to enable access via a port by external devices or communication networks to data stored in blocks in the plurality of blocks; and enabling read-only access to the particular block by the security logic for use in the protocol, and preventing access to the particular block via the port.
Abstract:
A system and method for utilizing a security key stored in non-volatile memory, and for generating a PUF-based data set on an integrated circuit including non-volatile memory cells, such as flash memory cells, are described. The method includes storing a security key in a particular block in a plurality of blocks of the non-volatile memory array; utilizing, in a security logic circuit coupled to the non-volatile memory array, the security key stored in the particular block in a protocol to enable access via a port by external devices or communication networks to data stored in blocks in the plurality of blocks; and enabling read-only access to the particular block by the security logic for use in the protocol, and preventing access to the particular block via the port.
Abstract:
The clock circuit of an integrated circuit operates with variations such as temperature, ground noise, and power noise. Various aspects of an improved clock integrated circuit address one or more of the variations in temperature, ground noise, and power noise.
Abstract:
A serial peripheral interface of an integrated circuit includes: a first transfer pin for receiving an instruction and an address; and a clock pin for inputting a plurality of timing pulses each having a rising edge and a falling edge. After the first transfer pin receives the instruction, the integrated circuit receives the address through the first transfer pin in continuity with the receipt of the instruction. The first transfer pin receives the instruction at either of the rising edges and the falling edges of the timing pulses and receives the address at both of the rising edges and falling edges of the timing pulses.
Abstract:
Counting status circuits are electrically coupled to corresponding status elements. The status elements selectably store a bit status of a bit line coupled to a memory array. The bit status can indicate one of at least pass and fail. The counting status circuits are electrically coupled to each other in a sequential order. Control logic causes processing of the counting status circuits in the sequential order to determine a total of the memory elements that store the bit status. The total number of memory elements that store the bit status indicate the number of error bits or non-error bits, which can help determine whether there are too many errors to be fixed by error correction codes.
Abstract:
The storage layer such as a nitride layer of a nonvolatile memory cell has two storage parts storing separately addressable data, typically respectively proximate to the source terminal and the drain terminal. The applied drain voltage while sensing the data of one of the storage parts depends on the data stored at the other storage part; the different parts can be in different, neighboring memory cells. If the data stored at the other storage part is represented by a threshold voltage exceeding a minimum threshold voltage, then the applied drain voltage is raised. This technology is useful in read operations and program verify operations to widen the threshold voltage window.
Abstract:
An integrated circuit with memory can operate with reduced latency between consecutive operations such as read operations. At a first time, a first operation command is finished on a memory array on an integrated circuit. At a second time, a second operation command is begun on the memory array. A regulated output voltage from the charge pump is coupled to word lines in the memory array. From the first time to the second time, a regulated output voltage is maintained at about a word line operation voltage such as a read voltage.
Abstract:
A circuit for voltage detection and protection comprises a first block, a first voltage detector, a second block and a second voltage detector. The first block receives a first voltage supply. The first voltage detector detects the first voltage supply and generates a first detecting signal when detecting the first voltage supply level is out of the first operating voltage range. The second block receives a second voltage supply. The second voltage detector detects the second voltage supply and generates a second detecting signal when detecting the second voltage supply level is out of the second operating voltage range. The first block performs a protection operation on the circuit when monitoring at least one of the first and second detecting signals.
Abstract:
An integrated circuit includes an output buffer and a control circuit. The output buffer has a signal input, a signal output, and a set of control inputs. The output buffer has an output buffer delay, and a driving strength adjustable in response to control signals applied to the set of control inputs. Alternatively, the output buffer delay is variable. The control circuit is connected to the set of control inputs of the output buffer. The control circuit uses first and second timing signals to generate the control signals, and can include a first delay circuit that generates the first timing signal with a first delay, and a second delay circuit that generates the second timing signal with a second delay that correlates with the output buffer delay.