摘要:
A semiconductor chip having an exposed metal terminating pad thereover, and a separate substrate having a corresponding exposed metal bump thereover are provided. A conducting polymer plug is formed over the exposed metal terminating pad. A conforming interface layer is formed over the conducting polymer plug. The conducting polymer plug of the semiconductor chip is aligned with the corresponding metal bump. The conforming interface layer over the conducting polymer plug is mated with the corresponding metal bump. The conforming interface layer is thermally decomposed, adhering and permanently attaching the conducting polymer plug with the corresponding metal bump. Methods of forming and patterning a nickel carbonyl layer are also disclosed.
摘要:
Isolated peptide sequences and proteins containing these sequences are provided which are useful in the prevention and treatment of infection caused by Gram-positive bacteria. The peptide sequences have been shown to be highly conserved motifs in the surface proteins of Gram-positive bacteria, and these consensus sequences include amino acid sequences such as LPXTG (SEQ ID NO:13), ALKTGKIDIIISGMTSTPERKK (SEQ ID NO:14), VEGAVVEKPVAEAYLKQN (SEQ ID NO:15), and EYAGVDIDLAKKIAK (SEQ ID NO:16). By virtue of the highly conserved regions, the sequences and the proteins including these sequences can be utilized to generate antibodies which can recognize these highly conserved motifs and the proteins containing them and thus be useful in the treatment or prevention of a wide range of infections caused by Gram-positive bacteria.
摘要翻译:提供了含有这些序列的分离的肽序列和蛋白质,其可用于预防和治疗由革兰氏阳性菌引起的感染。 已经显示肽序列在革兰氏阳性细菌的表面蛋白中是高度保守的基序,并且这些共有序列包括氨基酸序列,例如LPXTG(SEQ ID NO:13),ALKTGKIDIIISGMTSTPERKK(SEQ ID NO:14),VEGAVVEKPVAEAYLKQN (SEQ ID NO:15)和EYAGVDIDLAKKIAK(SEQ ID NO:16)。 由于高度保守的区域,包括这些序列的序列和蛋白质可用于产生能识别这些高度保守的基序和含有它们的蛋白质的抗体,因此可用于治疗或预防引起的广泛感染 通过革兰氏阳性菌。
摘要:
A method of bonding a wire to a metal bonding pad, comprising the following steps. A semiconductor die structure having an exposed metal bonding pad within a chamber is provided. The bonding pad has an upper surface. A hydrogen-plasma is produced within the chamber from a plasma source. The metal bonding pad is pre-cleaned and passivated with the hydrogen-plasma to remove any metal oxide formed on the metal bonding pad upper surface. A wire is then bonded to the passivated metal bonding pad.
摘要:
A method for cleaning a semiconductor structure using vapor phase condensation with a thermally vaporized cleaning agent, a hydrocarbon vaporized by pressure variation, or a combination of the two. In the thermally vaporized cleaning agent process, a semiconductor structure is lowered into a vapor blanket in a thermal gradient cleaning chamber at atmospheric pressure formed by heating a liquid cleaning agent below the vapor blanket and cooling the liquid cleaning agent above the vapor blanket causing it to condense and return to the bottom of the thermal gradient cleaning chamber. The semiconductor structure is then raised above the vapor blanket and the cleaning agent condenses on all of the surfaces of the semiconductor structure removing contaminants and is returned to the bottom of the chamber by gravity. In the pressurized hydrocarbon process, a semiconductor structure is placed into a variable pressure cleaning chamber, having a piston which changes the pressure by reducing or increasing the volume of the chamber. The semiconductor structure first exposed to the hydrocarbon in vapor phase, then the piston is lowered to condense the hydrocarbon. A semiconductor structure can be cleaned by either or both of these processes by repetitive vaporization/condensation cycles.
摘要:
A method of preventing metal penetration and diffusion from metal structures formed over a semiconductor structure, comprising the following steps. A semiconductor structure including a patterned dielectric layer is provided. The patterned dielectric layer includes an opening and an upper surface. The dielectric layer surface is then passivated to form a passivation layer. A metal plug is formed within the dielectric layer opening. The passivation layer prevents penetration and diffusion of metal out from the metal plug into the semiconductor structure and the patterned dielectric layer.
摘要:
A method for reducing copper diffusion into an inorganic dielectric layer adjacent to a copper structure by doping the inorganic dielectric layer with a reducing agent (e.g. phosphorous, sulfur, or both) during plasma enhanced chemical vapor deposition. The resulting doped inorganic dielectric layer can reduce copper diffusion without a barrier layer reducing fabrication cost and cycle time, as well as reducing RC delay.
摘要:
A method for reducing RC delay in integrated circuits by lowering the dielectric constant of the intermetal dielectric material between metal interconnects or metal damascene interconnects is described. The dielectric constant of the intermetal dielectric is lowered by introducing air into the intermetal dielectric between metal interconnections. An air bridge comprising a porous material, preferably amorphous silicon, porous silicon oxide, or porous silsesquioxane, is deposited over a layer containing a reactive organic material. An oxygen plasma treatment or an anisotropic etching through the pores in the air bridge layer removes at least a portion of the reactive material, leaving air plugs within the intermetal dielectric.
摘要:
An effective copper decontamination method in the fabrication of integrated circuits is achieved. An organic-based HFACAC decontamination compound in vapor phase is sprayed over elemental copper found on equipment or tools or as a spill wherein the compound reacts with all of the elemental copper and forms a volatile compound that can be flushed away thereby completing copper decontamination.
摘要:
A method of fabricating an anti-fuse module and dual damascene interconnect structure comprises the following steps. A semiconductor structure having at least two exposed metal lines covered by a first dielectric layer is provided. A first metal line is within an anti-fuse area and a second metal line is within an interconnect area. A first metal via is formed within the first dielectric layer within the anti-fuse area with the first metal via contacting the first metal line. A SiN layer is deposited over the first dielectric layer and the first metal via. The SiN layer is patterned to form at least two openings. A first opening exposes the first metal via, and a second opening exposes a portion of the first dielectric layer above the second metal line. A fusing element layer is deposited and patterned over the patterned SiN layered structure to form a fusing element over the first metal via. Simultaneously, an anti-fuse metal line is formed over the fusing element to form an anti-fuse module within the anti-fuse area, and a dual damascene interconnect is formed over, and contacting with, the second metal line and within the interconnect area.
摘要:
Clustering a plurality of client devices running an application as a function of a data structure such that the plurality of client devices are each assigned a cluster. Client devices having similar performance metrics are assigned the same cluster. An operation of the application is modified as a function of the performance metrics of the client device. The modification of application operation is performed by turning certain features of the application on and off using a rule based on device cluster.