Abstract:
A low friction valve train actuating at least one valve in an internal combustion engine includes a cam shaft having at least one cam, a tappet contacting the cam and valve, the cam and valve having outer surfaces with an open porosity, a solid film lubricant impregnated and anchored in the open porosity, the solid film lubricant is stable to temperatures at about 700.degree. F. to retain a low coefficient of friction in an oil starved environment.
Abstract:
A composition for lubricating a metal workpiece prior to cold forming consists essentially of: an aqueous alkaline stearate compound present in an amount sufficient to impart metal lubrication between about 180.degree. F. and about 320.degree. F.; an aqueous alkaline palmitate compound present in an amount sufficient to impart metal lubrication below about 160.degree. F.; an aqueous metallic stearate compound present in an amount sufficient to impart metal lubrication between about 320.degree. F. and 440.degree. F.; a polymeric glycol present in an amount sufficient to provide temperature stability, act as a carrier for the aqueous compounds, and impart a waxy lubrication to the metal; a compound present in an amount sufficient to act as a carrier for the aqueous compounds and to provide a translucent film barrier on the metal; an alkaline buffering agent present in an amount sufficient to provide dispersion, viscosity and stability; a hydrotropic agent present in an amount sufficient to solubilize the lubricating composition. A process is disclosed for lubricating a metal workpiece outer surface prior to cold forming, the process comprising the step of disposing a non-reactive lubricating composition on the workpiece outer surface, the outer surface having been alkaline cleaned, hot water rinsed, acid pickled, and cold water rinsed.
Abstract:
A coating and bonding composition is disclosed which includes a suspending agent, bonding agent, thinning agent, and a metallic flake designed to bond a dissimilar metal to the thread surface to prevent seizing and galling.
Abstract:
A composition for lubricating a metal workpiece prior to cold forming consists essentially of: an aqueous alkaline stearate compound present in an amount sufficient to impart metal lubrication between about 180.degree. F. and about 320.degree. F.; an aqueous alkaline palmitate compound present in an amount sufficient to impart metal lubrication below about 160.degree. F.; an aqueous metallic stearate compound present in an amount sufficient to impart metal lubrication between about 320.degree. F. and 440.degree. F.; a polymeric glycol present in an amount sufficient to provide temperature stability, act as a carrier for the aqueous compounds, and impart a waxy lubrication to the metal; a compound present in an amount sufficient to act as a carrier for the aqueous compounds and to provide a translucent film barrier on the metal; an alkaline buffering agent present in an amount sufficient to provide dispersion, viscosity and stability; a hydrotropic agent present in an amount sufficient to solubilize the lubricating composition. A process is disclosed for lubricating a metal workpiece outer surface prior to cold forming, the process comprising the step of disposing a non-reactive lubricating composition on the workpiece outer surface, the outer surface having been alkaline cleaned, hot water rinsed, acid pickled, and cold water rinsed.
Abstract:
A padding powder suspension or slurry and method for applying a padding powder for lubricating components of printing, copy and facsimile machines such as the photoreceptor drum, photoreceptor belt, wiper and doctor blade. The padding powder is comprised of a mica-group mineral or a mixture of a mica-group mineral and calcium stearate. The method comprises mixing the padding powder with a solvent, for example alcohol, to form a different substance. The mica-group mineral is inert so it does not dissolve in the alcohol. A suspension agent or surfactant may also be mixed with the padding powder and alcohol to keep the padding powder suspended in the alcohol for a longer period of time. The resulting suspension or slurry is then applied on the components. The suspension or slurry may easily be applied with brushes, spray devices, sponge materials or a soft cloth. After the suspension or slurry is evenly applied on the components, the solvent and suspension agent evaporates and the padding powder dries to a thin residue. The result is an evenly distributed lubricant in the correct amount for optimum performance of the component, with no mess or waste of padding powder.
Abstract:
A solid lubricant composition comprises (I) 30 to 70 parts by weight of graphite, (II) 70 to 30 parts by weight of a mixture of at least two components selected from alkali molybdate, alkali or alkaline earth sulphate and alkali phosphate, the ratio of the two individual ingredients being in the range of from 0.05/1 to 20/1. Compositions give improved load-bearing capacity and allows settling of friction coefficient.
Abstract:
A dry film, low coefficient of friction lubricant for titanium pieces is prepared by mixing together solid lubricant particles, poly(tetrafluoroethylene), a suspending agent, and a curable resin in an evaporable carrier. The mixture is applied to titanium or titanium alloy surfaces that contact each other in service. The carrier is evaporated during a subsequent thermal cure, leaving a lubricating film on the surfaces.
Abstract:
A powdered chemical mixture for lubricating photoreceptors, wiper blades, doctor blades and slide seals used on dry toner printers, copiers, and facsimile machines. The dry powder comprises a mica group mineral wet-ground to attain cold, dry lubricity, resiliency and particle alignment. The wet-ground mica-group mineral may be coated by calcium stearate to increase lubricity and reduce static electricity from the photoreceptor and blades during operation of the machine. The optimum powder would be comprised of 99% by weight mica-group mineral and 1% by weight calcium stearate. Muscovite and phlogopite are mica-group minerals suggested for use in the lubricating powder. The calcium stearate could also be used with powdered lubricants other than mica to reduce static electricity during operation of the machines.
Abstract:
A process for coating a machine part surface wherein the surface is cleaned, abraded and treated so as to render the surface directly bondable to a resin-bonded lubricant coating. A resin-bonded lubricant coating then is directly applied to the treated machine part surface and cured so as to cross-link the resin.
Abstract:
The present invention relates to a cooling fluid for metal cutting, drilling, grinding and other fabricating operations comprising a compound of the formula C.sub.6 H.sub.4 (OH)COOR, where R is selected from the group consisting of --H,--CH.sub.3, --C.sub.2 H.sub.5,--C.sub.3 H.sub.7, and --C.sub.4 H.sub.9, a ketone with a boiling point of at least about 150.degree. F., and an at least partially soluble acid.The present invention also relates to a process and fluid product made by a certain process for cooling tools and workpieces for metal cutting, drilling, grinding and other fabricating operations comprising the steps of mixing a compound of the formula C.sub.6 H.sub.4 (OH)COOR, where R is selected from the group consisting of --H,--CH.sub.3,--C.sub.2 H.sub.5,--C.sub.3 H.sub.7, and --C.sub.4 H.sub.9, a ketone with a boiling point of at least about 150.degree. F., and an at least partially soluble acid, the mixture being a cooling fluid, maintaining substantial contact between the cooling fluid and an amount of transition metal or alloy containing at least one transition metal, sufficient to catalyze a reaction within the fluids during fabrication, and operating a tool while maintaining substantial contact between the tool and the fluid during fabrication.