摘要:
In forming a junction in an energy converting diode by diffusing an impurity such as Zn into a III - V compound crystal such as GaAs, a junction region doped with an impurity such as Zn can be formed directly beneath a thin metal film by forming a thin layer of refractory metal such as Ta on a surface of said crystal, sealing this structure in a reaction tube together with an impurity source such as ZnAs2, and heating the tube within a heating furnace to perform diffusion treatment. In such a formed device, said metal film formed on the surface of the junction region is not lost by the diffusion treatment and remains completely. Further, the remaining metal film makes a good and strong ohmic contact with the matrix crystal, therefore it can be utilized as an electrode and also as a heat dissipating medium by adhering a heat dissipator thereon to form a good heat dissipating device. When part of said refractory metal film is oxidized by anodization, this oxidized film can work as a mask for impurity diffusion and enables selective diffusion of the junction region.
摘要:
The disclosure herein pertains to the preparation of semiconductor materials and solid-state devices fabricated therefrom. More particularly, the disclosure pertains to a vapor phase process for the preparation of electroluminescent materials, particularly GaAs1 xPx, doped with isoelectronic impurities, particularly nitrogen, and to electroluminescent devices fabricated therefrom.
摘要:
ELECTROLUMINESCENT P-N DIODES WHICH CONTAIN SULPHUR TO PRODUCE AN EXCESS DONOR CONCENTRATION OF 5 X 1016 TO 2X10**17 CM.-3 EXHIBIT EFFICIENCIES OF AT LEAST AN ORDER OF MAGNITUDE GREATER THAN FOR OTHER N-TYPE DOPANTS. WHEN THE DIODES ARE PRODUCED IN AN AMMONIA ATMOSPHERE, EFFICIENCY IS INCREASED STILL FURTHER.
摘要:
Provided is a semiconductor light-emitting element that exhibits a light emission spectrum in which a single peak is obtained by controlling multi peaks. In the semiconductor light-emitting element having a second conductivity type cladding layer on the light extraction side, the arithmetic mean roughness Ra of a surface of the light extraction surface of the second conductivity type cladding layer is 0.07 μm or more and 0.7 μm or less, and the skewness Rsk of the surface is a positive value.
摘要:
Described are light emitting diode (LED) devices including a quantum well comprising an indium gallium nitride (InGaN) well and a barrier layer. The indium gallium nitride (InGaN) well has an indium concentration greater than 18% mole fraction. The LED device has a dominant wavelength greater than 605 nm at a current density of greater than or equal to 2 A/cm2.
摘要:
A device may include a metal contact between a first isolation region and a second isolation region on a first surface of an epitaxial layer. The device may include a first sidewall and a second sidewall on a second surface of the epitaxial layer distal to the first isolation region and the second isolation region. The device may include a wavelength converting layer on the epitaxial layer between the first sidewall and the second sidewall.
摘要:
A light source includes a p-type semiconductor layer, an n-type semiconductor layer, and an active region between the p-type semiconductor layer and the n-type semiconductor layer and configured to emit light. The active region includes a plurality of barrier layers and one or more quantum well layers. The one or more quantum well layers include at least one quantum well layer that is doped with both n-type dopants and p-type dopants. A net carrier concentration of the at least one quantum well layer is between about 1×1017 /cm3 and about 10×1017 /cm3. The n-type dopants include, for example, Si, Ge, S, Se, or Te. The p-type dopants include, for example, C, Mg, Be, or Zn. The active region is characterized by a lateral linear dimension equal to or less than about 10 µm.
摘要:
A light emitting device according to an embodiment of the present disclosure includes a first conductivity type semiconductor region; a second conductivity type semiconductor region; and a light emitting region disposed between the first conductivity type semiconductor region and the second conductivity type semiconductor region, in which the second conductivity type semiconductor region includes a plurality of regions including Mg balls.
摘要:
A semiconductor device is provided, which includes an active structure and a first semiconductor layer. The active structure includes an active region having a topmost surface and a bottommost surface, and a first dopant distributing from the topmost surface to the bottommost surface. The first semiconductor layer is located under the active structure and includes a second dopant. The active region includes a semiconductor material including As.
摘要:
A device may include a metal contact between a first isolation region and a second isolation region on a first surface of an epitaxial layer. The device may include a first sidewall and a second sidewall on a second surface of the epitaxial layer distal to the first isolation region and the second isolation region. The device may include a wavelength converting layer on the epitaxial layer between the first sidewall and the second sidewall.