Abstract:
A microtiter reaction system (15), comprising, a support rack (16) having an array of reaction wells (18) disposed therein, each reaction well (18) having an open top end (30) and a closed bottom end (32); a plurality of generally funnel shaped reactor caps (20) with each of reactor cap (20) being received into open top end (30) of each reaction well (18); a porous gas-permeable layer (22) positioned over support rack (16), gas-permeable layer (22) having an array of holes (23) therein with each hole (23) being positioned over open top end (30) of each of the plurality of reaction wells (18); gasket (24) positioned over porous gas-permeable layer (22); and a top cover (26) positioned over gasket (22).
Abstract:
An apparatus and method for carrying out and monitoring the progress and properties of multiple reactions is disclosed. The method and apparatus are especially useful for synthesizing, screening, and characterizing combinatorial libraries, but also offer significant advantages over conventional experimental reactors as well. The apparatus generally includes multiple vessels for containing reaction mixtures, and systems for controlling the stirring rate and temperature of individual reaction mixtures or groups of reaction mixtures. In addition, the apparatus may include provisions for independently controlling pressure in each vessel. In situ monitoring of individual reaction mixtures provides feedback for process controllers, and also provides data for determining reaction rates, product yields, and various properties of the reaction products, including viscosity and molecular weight.
Abstract:
A novel gas injection valve for injecting discrete charges of gas into a mobile phase or carrier stream is provided. Injection valves of the invention comprise a plurality of microvalves capable of receiving gas at different pressures and emitting discrete charges of gas at approximately the same pressure. The invention further provides for parallel injection valve arrays capable of injecting multiple samples substantially simultaneously and a method of injecting discrete gas samples at a controlled pressure to a high-resolution gas chromatograph.
Abstract:
An apparatus and method is provided for preparing and using a very large and diverse array of compounds on a substrate having rapidly accessible locations. The substrate contains cells in which the compounds of the array are located. Surrounding the cells is a non-wetable surface that prevents the solution in one cell from moving to adjacent cells. The compounds are delivered to the individual cells of the array by a micropipette attached to an X-Y translation stage.
Abstract:
A stacked plate chemical reactor in which simple plates are stacked together to form the reactor. When openings in adjacent plates are properly aligned, fluid pathways and processing volumes are defined for chemical reactants, heat transfer medium, and a product. In one embodiment of the invention, an n-fold internal array is achieved by providing a first group of simple plates defining a reaction unit that includes bypass fluid channels and reaction fluid channels for each reactant, such that a portion of each reactant is directed to subsequent groups of simple plates defining additional reaction units. A chemical reactor with variable output is obtained in a preferred embodiment by reversibly joining reactor stacks comprising irreversibly joined reaction units, these reaction units consisting of a plurality of simple plates. Other embodiments employ at least one of an array of parallel fluid channels having different widths, bifurcated fluid distribution channels to achieve a substantially even flow equipartition for fluids with varying viscosities flowing within the fluid channels of each reaction unit.
Abstract:
A gold-lined pyrolysis reactor is used to pyrolyze compounds to form fluoroolefins like tetrafluoroethylene and hexafluoropropylene in high yield, with minimum to no formation of perfluoroisobutylene, chlorotrifluoroethylene, coke, salts, or polymer.
Abstract:
Disclosed are systems and methods involved in ultra high throughput screening of chemical compounds which have an affinity for or interact with a biological target. The invention utilizes an apparatus for ultra high throughput screening of chemical compounds for a biological target. The system is based on a capillary bundle that has two distinguishable ends. Capillaries on one end are connected to chemical compounds stored in discrete reservoirs such as micro titer plate wells; capillaries on the other end are tightly bound and then processed to form a two dimensional array that enable the parallel reactions of a target and many different compounds.
Abstract:
A reaction apparatus including: a main body having a reaction chamber with an upper opening thereof, a lid hinge, and a lid combined to the lid hinge, rotationally opening and closing the upper opening; a lifting member having a first end part separated from a rotation axis of the lid and rotatably combined with the lid, and a second end part rotatably combined to the main body, that moves in opening and closing directions; and a driver activating the lifting member. With this configuration, the present invention provides a reaction apparatus, with a lid that is opened and closed readily, and in which the lid parallelly contacts a sealing member, and thereby creating a vacuum in the reaction chamber with ease.
Abstract:
Disclosed is a technology associated with a microreactor, which realizes convenient introduction of a sample biological cell such as an animal culture cell in the microcell, and enables further reduction in the size as well as higher integration of the microcells, thereby realizing a highly improved efficiency in the drug efficacy screening experiments. In the present invention, interior of the of the microreactor has been treated to impart higher affinity such as hydrophilicity for the sample such as cell while the surface near the microreactor has been treated to impart non-affinity such as water repellency. A mechanical vibration, oscillation, or shaking in either a defined pattern or in a random motion may be applied to the microreactor and the surface near the microreactor cavity by a motion generator or oscillator or the like. As a result, the cell or other sample that has been dropped near the microreactor can freely migrate along the surface without being adsorbed to the surface where it was first dropped, and the cell or other sample that has been once introduced in the interior of the microreactor will stay in the microreactor without moving out of the microreactor.
Abstract:
Devices and methods are disclosed for synthesizing compounds on the surface of supports. The devices are flow devices, which include a housing comprising a housing chamber. The housing has an opening adapted for insertion of a support into the housing chamber. A sealing member is movably mounted in the housing chamber and adapted to engage the support to form a reagent chamber between a surface of the support and a surface of the sealing member. A mechanism is included for moving the sealing member within the housing chamber. The device has both an inlet and an outlet, which are both in fluid communication with the reagent chamber. In the methods of the invention a support is placed into a chamber of a device such as described above. The mechanism adapted to engage the support on a surface opposite the surface engaged by the sealing member is activated to urge the support toward the sealing member. The pressure-activated mechanism is activated to urge the support against the aforesaid mechanism and against an interior wall of the housing chamber to form the reagent chamber. A fluid reagent for conducting the reaction step is introduced into the reagent chamber by means of the inlet. Thereafter, the fluid reagent is removed from the reagent chamber. The pressure-activated mechanism is deactivated and the support is removed from the housing chamber. In this way the reagent chamber is formed and un-formed in situ.