Abstract:
The present invention generally provides methods and apparatus for monitoring and maintaining flatness of a substrate in a plasma reactor. Certain embodiments of the present invention provide a method for processing a substrate comprising positioning the substrate on an electrostatic chuck, applying an RF power between the an electrode in the electrostatic chuck and a counter electrode positioned parallel to the electrostatic chuck, applying a DC bias to the electrode in the electrostatic chuck to clamp the substrate on the electrostatic chuck, and measuring an imaginary impedance of the electrostatic chuck.
Abstract:
Methods and apparatus for electron beam treatment of a substrate are provided. An electron beam apparatus that includes a vacuum chamber, at least one thermocouple assembly in communication with the vacuum chamber, a heating device in communication with the vacuum chamber, and combinations thereof are provided. In one embodiment, the vacuum chamber comprises an electron source wherein the electron source comprises a cathode connected to a high voltage source, an anode connected to a low voltage source, and a substrate support. In another embodiment, the vacuum chamber comprises a grid located between the anode and the substrate support. In one embodiment the heating device comprises a first parallel light array and a second light array positioned such that the first parallel light array and the second light array intersect. In one embodiment the thermocouple assembly comprises a temperature sensor made of aluminum nitride.
Abstract:
Compressive stress in a film of a semiconductor device may be controlled utilizing one or more techniques, employed alone or in combination. A first set of embodiments increase silicon nitride compressive stress by adding hydrogen to the deposition chemistry, and reduce defects in a device fabricated with a high compressive stress silicon nitride film formed in the presence of hydrogen gas. A silicon nitride film may comprise an initiation layer formed in the absence of a hydrogen gas flow, underlying a high stress nitride layer formed in the presence of a hydrogen gas flow. A silicon nitride film formed in accordance with an embodiment of the present invention may exhibit a compressive stress of 2.8 GPa or higher.
Abstract:
A process to form a copper-silicon-nitride layer on a copper surface on a semiconductor wafer is described. The process may include the step of exposing the wafer to a first plasma made from helium. The process may also include exposing the wafer to a second plasma made from a reducing gas, where the second plasma removes copper oxide from the copper surface, and exposing the wafer to silane, where the silane reacts with the copper surface to selectively form copper silicide. The process may further include exposing the wafer to a third plasma made from ammonia and molecular nitrogen to form the copper silicon nitride layer.
Abstract:
A memory cell comprises a p-doped substrate with a pair of spaced apart n-doped regions on the substrate that form a source and drain about the channel. A stack of layers on the channel comprises, in sequence, (i) a tunnel oxide layer, (ii) a floating gate, (iii) an inter-gate dielectric, and (iv) a control gate. A polysilicon layer is on the source and drain. A cover layer covering the stack of layers comprises a spacer layer and a pre-metal-deposition layer. Optionally, contacts are used to contact each of the source, drain, and silicide layers, and each have exposed portions. A shallow isolation trench is provided about n-doped regions, the trench comprising a stressed silicon oxide layer having a tensile stress of at least about 200 MPa. The stressed layer reduces leakage of charge held in the floating gate during operation of the memory cell.
Abstract:
A method of forming a layer on a substrate in a chamber, wherein the substrate has at least one formed feature across its surface, is provided. The method includes exposing the substrate to a silicon-containing precursor in the presence of a plasma to deposit a layer, treating the deposited layer with a plasma, and repeating the exposing and treating until a desired thickness of the layer is obtained. The plasma may be generated from an oxygen-containing gas.
Abstract:
An apparatus and method are provided for controlling the intensity and distribution of a plasma discharge in a plasma chamber. In one embodiment, a shaped electrode is embedded in a substrate support to provide an electric field with radial and axial components inside the chamber. In another embodiment, the face plate electrode of the showerhead assembly is divided into zones by isolators, enabling different voltages to be applied to the different zones. Additionally, one or more electrodes may be embedded in the chamber side walls.
Abstract:
Methods of making an article having a protective coating for use in semiconductor applications are provided. In certain embodiments, a method of coating an aluminum surface of an article utilized in a semiconductor processing chamber is provided. The method comprises providing a processing chamber; placing the article into the processing chamber; flowing a first gas comprising a carbon source into the processing chamber; flowing a second gas comprising a nitrogen source into the processing chamber; forming a plasma in the chamber; and depositing a coating material on the aluminum surface. In certain embodiments, the coating material comprises an amorphous carbon nitrogen containing layer. In certain embodiments, the article comprises a showerhead configured to deliver a gas to the processing chamber.
Abstract:
A process to form a copper-silicon-nitride layer on a copper surface on a semiconductor wafer is described. The process may include the step of exposing the wafer to a first plasma made from helium. The process may also include exposing the wafer to a second plasma made from a reducing gas, where the second plasma removes copper oxide from the copper surface, and exposing the wafer to silane, where the silane reacts with the copper surface to selectively form copper silicide. The process may further include exposing the wafer to a third plasma made from ammonia and molecular nitrogen to form the copper silicon nitride layer.
Abstract:
Methods are provided for forming a structure that includes an air gap. In one embodiment, a method is provided for forming a damascene structure comprises depositing a porous low dielectric constant layer by a method including reacting an organosilicon compound and a porogen-providing precursor, depositing a porogen-containing material, and removing at least a portion of the porogen-containing material, depositing an organic layer on the porous low dielectric constant layer by reacting the porogen-providing precursor, forming a feature definition in the organic layer and the porous low dielectric constant layer, filing the feature definition with a conductive material therein, depositing a mask layer on the organic layer and the conductive material disposed in the feature definition, forming apertures in the mask layer to expose the organic layer, removing a portion or all of the organic layer through the apertures, and forming an air gap adjacent the conductive material.