Abstract:
A method and apparatus for selectively applying a print material onto a substrate for the synthesis of an array of oligonucleotides at selected regions of a substrate. The print material includes a barrier material, a monomer sequence, a nucleoside, a deprotection agent, a carrier material, among other materials. The method and apparatus also relies upon standard DMT based chemistry, and a vapor phase deprotection agent such as solid TCA and the like.
Abstract:
A method and apparatus for selectively applying a print material onto a substrate for the synthesis of an array of oligonucleotides at selected regions of a substrate. The print material includes a barrier material, a monomer sequence, a nucleoside, a deprotection agent, a carrier material, among other materials. The method and apparatus also relies upon standard DMT based chemistry, and a vapor phase deprotection agent such as solid TCA and the like.
Abstract:
A method for synthesizing and screening oligonucleotides on a solid substrate. The method provides for the irradiation of a first predefined region of a substrate comprising immobilized nucleotides on its surface, without irradiation of a second predefined region of the substrate. The irradiation step removes a protecting group from the immobilized nucleotides. The substrate is contacted with a first nucleotide to couple the nucleotide to the immobilized nucleotides in the first predefined region without coupling in the second predefined region. At least a part of the first predefined region and at least a part of the second predefined region are subjected to further irradiation. The substrate is contacted with a second nucleotide, which couples to the immobilized nucleotides in at least part of the first and at least part of the second predefined regions. By repeating these steps, an array of diverse oligonucleotides is formed on the substrate. The diverse oligonucleotides are then screened for specific binding to a receptor, e.g., a polynucleotide.
Abstract:
A method for synthesizing oligonucleotides on a solid substrate. The method provides for the irradiation of a first predefined region of the substrate without irradiation of a first predefined region of the substrate. The irradiation of a second predefined region of the substrate. The irradiation step removes a protecting group therefrom. The substrate is contacted with a first nucleotide to couple the nucleotide to the substrate in the first predefined region. By repeating these steps, an array of diverse oligonucleotides is formed on the substrate.
Abstract:
Methods and compositions are described for immobilizing anti-ligands, such as antibodies or antigens, hormones or hormone receptors, oligonucleotides, and polysaccharides on surfaces of solid substrates for various uses. The methods provide surfaces covered with caged binding members which comprise protecting groups capable of being removed upon application of a suitable energy source. Spatially addressed irradiation of predefined regions on the surface permits immobilization of anti-ligands at the activated regions on the surface. Cycles of irradiation on different regions of the surface and immobilization of different anti-ligands allows formation of an immobilized matrix of anti-ligands at defined sites on the surface. The immobilized matrix of anti-ligands permits simultaneous screenings of a liquid sample for ligands having high affinities for certain anti-ligands of the matrix. A preferred embodiment of the invention involves attaching photoactivatable biotin derivatives to a surface. Photolytic activation of the biotin derivatives forms biotin analogs having strong binding affinity for avidin. Biotinylated anti-ligands can be immobilized on activated regions of the surface previously treated with avidin.
Abstract:
Sensitive detection techniques and compositions for such techniques are provided by employing fluorescent proteins having bilin prosthetic groups as labels. The bilin containing proteins can be conjugated to ligands or receptors for use in systems involving ligand-receptor binding for the analysis, detection or separation of ligands and receptors. Particularly, one or more of the bilin containing proteins may be used as labels in conjunction with each other or other fluorescers for defining subsets of naturally occurring aggregations e.g. cells.
Abstract:
Sensitive detection techniques and compositions for such techniques employing fluorescent proteins having bilin prosthetic groups as labels i.e. phycobiliprotein. The bilin containing proteins can be conjugated to ligands or receptors for use in systems involving ligand-receptor binding for the analysis, detection or separation of ligands and receptors. Particularly, one or more of the bilin containing proteins may be used as labels in conjuction with each other or other fluorescers for defining subsets of naturally occurring aggregations e.g. cells.