Abstract:
Disclosed is a Brillouin erbium-fiber laser system producing multiwavelengths with a dual spacing of 10 GHz and 20 GHz. The Brillouin erbium-fiber laser system includes: a Sagnac reflector generating even- and odd-order Strokes waves by launching input lights, a first unit forming a first resonator with the Sagnac reflector, wherein the first unit is coupled to a first directional coupler in the Sagnac reflector, a second unit forming a second resonator with the Sagnac reflector, wherein the second unit is coupled to the first directional coupler in the Sagnac reflector, and a third unit for inputting Brillouin pump light into one of first and the second units, whereby the optical fiber laser system outputs multiwavelengths with a dual spacing.
Abstract:
A wavelength-division multiplexing optical communication system and a method for measuring optical performance of an output signal for the system. The optical communication system includes: a service-provider device; a local node; and a plurality of subscriber devices. The service-provider device includes: a plurality of first optical transceivers; a first optical multiplexer/demultiplexer (OD/OM) connected to the plurality of first optical transceivers; and a seed-light source providing seed light. Each subscriber device includes a second optical transceiver. The local node connects the service-provider device and the plurality of subscriber devices to each other using a DWDM link comprising: a second multiplexer/demultiplexer (OD/OM); and a single-mode optical fiber for transmission. Here, the optical intensity of an output signal of the second optical transceiver is determined by compensating for the value of the loss caused when the output signal passes through the second OD/OM of the local node.
Abstract:
Provided are an automatic wavelength recognition apparatus and method. The automatic wavelength recognition apparatus includes: a division unit receiving a single optical signal and dividing the received optical signal into a plurality of optical signals; a plurality of filter units filtering the optical signals and having different and wavelength-dependent pass characteristics; a plurality of detection units detecting the filtered optical signals and measuring intensities of the detected optical signals; at least one comparison unit comparing outputs of any two of the detection units; and a wavelength determination unit receiving an output of the at least one comparison unit and determining a wavelength of the above single optical signal using a pre-stored look-up table.
Abstract:
Disclosed herein are a trench substrate and a method of manufacturing the same. The trench substrate includes a base substrate, an insulating layer formed on one side or both sides of the base substrate and including trenches formed in a circuit region and a dummy region positioned at a peripheral edge of the trench substrate, and a circuit layer formed in the trenches of the circuit region through a plating process and including a circuit pattern and vias. Thanks to formation of the trenches in the dummy region and the cutting region, deviation in thickness of a plating layer formed on the insulating layer in a plating process is improved upon.
Abstract:
An image processing system includes a pixel array including a plurality of regular pixel columns and at least one test pixel column, a plurality of column analog-to-digital converters (ADCs) configured to correspond to the regular pixel columns and convert analog input signals into digital signals, and a switching block configured to provide output signals of the regular pixel columns to input ends of the corresponding column ADCs in a normal mode, and provide in common an output signal of the test pixel column to the input ends of the column ADCs in a test mode, wherein the test pixel column generates signals having a minute voltage different from one row to another row.
Abstract:
Circuits, methods, and apparatus that provide differential-input, single-slope, column-parallel analog-to-digital converter (ADC) architectures for use in high-resolution CMOS image sensors (CIS) are described. A column ADC is coupled with a column of a pixel array and configured to convert a pixel signal level to a corresponding digital output value according to a ramp generator output. Each pixel is configured to output a pixel reset level and a pixel signal level at different operating stages, and the ramp generator output includes a ramp reset level and a ramp signal level at the same or different at different operating stages. The pixel and ramp outputs are used to differentially drive a comparator stage of the column ADC, for example, to reduce power supply noise.
Abstract:
Provided are a semiconductor device and a method for manufacturing the same. Since an additional space for forming a shield line is unnecessary, the critical dimension of metal lines is reduced, thereby improving data transfer characteristics, signaling characteristics and noise characteristics of the metal lines. The semiconductor device includes: a plurality of metal lines disposed on the semiconductor device; a plurality of insulation layers disposed on the metal lines; and a plurality of shield lines disposed between the insulation layers.
Abstract:
Various embodiments of the present invention include enabling, during a calibration phase, a counter to count one less than a number of clock periods associated with a determined offset. The counted number of the clock periods is stored in calibration memory. In a conversion phase, inverted outputs are loaded from the calibration memory to the counter, where the counter is enabled to count the clock periods to determine a digital equivalent value of an analog signal amplitude.
Abstract:
Disclosed herein are a remote node and a telephone station terminal in a passive optical network (PON). The remote node includes an optical circulator that transmits downlink signals input from a downlink optical backbone network to a wavelength distributor and transmits uplink signals input from the wavelength distributor to an uplink optical backbone network different from a downlink optical backbone network; and a wavelength distributor that distributes the downlink signal input from the optical circulator into a plurality of wavelengths to be connected to an optical distribution network and connects the uplink signals input from the optical distribution network to the optical circulator.
Abstract:
A method for charging an external device and a display using the method are provided. The method includes, determining whether the external device is chargeable and connected to the display through a connector when the displaying apparatus is in a standby mode; and if it is determined that the external device is chargeable and connected, charging the external device through the connector in the standby mode. The display includes a power supply that supplies standby power or main power; a connection checker which determines, in a standby mode, whether an external device is connected and is a chargeable device; and a controller. The controller controls the power supply to output standby power to the external device while the connection checker determines whether the external device is connected and is a chargeable device, and if the external device is connected is a chargeable, controls the power supply to output main power to charge the external device.