摘要:
A capacitor device is provided. The capacitor device includes at least one capacitor. The capacitor device also includes a first capacitor and a first filter coupling the first capacitor and a conductive region, wherein the first capacitor has a first resonance frequency and the first filter is configured to operate at a first frequency band covering the first resonance frequency.
摘要:
An ESD protection structure is provided. A substrate includes a first voltage variable material and has a first surface, a second surface substantially paralleled to the first surface and a via connecting the first and second surfaces. A first metal layer is disposed in the substrate for coupling to a ground terminal. The first voltage variable material is in a conductive state when an ESD event occurs, such that the via is electrically connected with the first metal layer to form a discharge path, and the first voltage variable material is in an isolation state when the ESD event is absent, such that the via is electrically isolated from the first metal layer.
摘要:
A multi-tier capacitor structure has at least one multi-tier conductive layer. At least one conductive via passes through the multi-tier conductive layer. When currents flow through the conductive via, different current paths are presented in the conductive via in response to different current frequency; in other words, different inductor is induced. Therefore, a single plate capacitor structure has function of hierarchical decoupling capacitor effect.
摘要:
A multi-functional composite substrate structure is provided. The first substrate with high dielectric constant and the second substrate with low dielectric constant and low loss tangent are interlaced above the third substrate. One or more permeance blocks may be formed above each substrate, so that one or more inductors may be fabricated thereon. One or more capacitors may be fabricated on the first substrate. Also, one or more signal transmission traces of the system impedance are formed on the second substrate of the outside layer. Therefore, the inductance of the inductor(s) is effectively enhanced. Moreover, the area of built-in components is reduced. Furthermore, it has shorter delay time, smaller dielectric loss, and better return loss for the transmission of high speed and high frequency signal.
摘要:
A complementary mirror image embedded planar resistor architecture is provided. In the architecture, a complementary hollow structure is formed on a ground plane or an electrode plane to minimize the parasitic resistance, so as to efficiently enhance the application frequency. In addition, in some cases, some signal transmission lines pass through the position below the embedded planar resistor, and if there is no shield at all, serious interference or cross talk phenomenon occurs. Therefore, the complementary hollow structure of the ground plane, the electrode plane, or a power layer adjacent to the embedded planar resistor is designed to be a mesh structure, so as to reduce the interference or cross talk phenomenon. In this manner, the whole resistor structure has preferable high frequency electrical characteristic in the circuit.
摘要:
A method is provided for testing a built-in component including multiple terminals in a multi-layered circuit board. At least one signal pad is provided on a top surface of the multi-layered circuit board for signal transmission. Each of the signal pads are electrically connected to one of the multiple terminals. At least one test pad is provided on the top surface of the multi-layered circuit board and each of the test pads is electrically connected to one of the multiple terminals. Then, detection occurs regarding one of the signal pads and one of the test pads that are electrically connected to a same one of the multiple terminals in order to determine a connection status of an electric path extending from the one signal pad through the same one terminal to the one test pad.
摘要:
An interleaving striped capacitor substrate structure for pressing-type print circuit boards is disclosed. To meet the high-frequency, high-speed, and high-density requirements in modern electronic systems, the interleaving striped capacitor substrate structure uses several dielectric materials of different dielectric coefficients to make a dielectric layer. One dielectric layer can be stacked on another to form a multi-layered capacitor substrate so that a single capacitor substrate can provide the highest capacitance required for the decoupling capacitor to suppress high-frequency noise signals, and the lower dielectric coefficient substrate required for high-speed signal transmission. This simultaneously achieves the effects of reducing high-frequency transmission time and suppressing high-frequency noise.