摘要:
A heterojunction bipolar transistor (HBT) structure, method of manufacturing the same and design structure thereof are provided. The HBT structure includes a semiconductor substrate having a sub-collector region therein. The HBT structure further includes a collector region overlying a portion of the sub-collector region. The HBT structure further includes an intrinsic base layer overlying at least a portion of the collector region. The HBT structure further includes an extrinsic base layer adjacent to and electrically connected to the intrinsic base layer. The HBT structure further includes an isolation region extending vertically between the extrinsic base layer and the sub-collector region. The HBT structure further includes an emitter overlying a portion of the intrinsic base layer. The HBT structure further includes a collector contact electrically connected to the sub-collector region. The collector contact advantageously extends through at least a portion of the extrinsic base layer.
摘要:
A semiconductor fabrication is described, wherein a MOS device and a MEMS device is fabricated simultaneously in the BEOL process. A silicon layer is deposited and etched to form a silicon film for a MOS device and a lower silicon sacrificial film for a MEMS device. A conductive layer is deposited atop the silicon layer and etched to form a metal gate and a first upper electrode. A dielectric layer is deposited atop the conductive layer and vias are formed in the dielectric layer. Another conductive layer is deposited atop the dielectric layer and etched to form a second upper electrode and three metal electrodes for the MOS device. Another silicon layer is deposited atop the other conductive layer and etched to form an upper silicon sacrificial film for the MEMS device. The upper and lower silicon sacrificial films are then removed via venting holes.
摘要:
A heterojunction bipolar transistor (HBT) structure, method of manufacturing the same and design structure thereof are provided. The HBT structure includes a semiconductor substrate having a sub-collector region therein. The HBT structure further includes a collector region overlying a portion of the sub-collector region. The HBT structure further includes an intrinsic base layer overlying at least a portion of the collector region. The HBT structure further includes an extrinsic base layer adjacent to and electrically connected to the intrinsic base layer. The HBT structure further includes an isolation region extending vertically between the extrinsic base layer and the sub-collector region. The HBT structure further includes an emitter overlying a portion of the intrinsic base layer. The HBT structure further includes a collector contact electrically connected to the sub-collector region. The collector contact advantageously extends through at least a portion of the extrinsic base layer.
摘要:
Wire-bonded semiconductor structures using organic insulating material and methods of manufacture are disclosed. The method includes forming a metal wiring layer in an organic insulator layer. The method further includes forming a protective layer over the organic insulator layer. The method further includes forming a via in the organic insulator layer over the metal wiring layer. The method further includes depositing a metal layer in the via and on the protective layer. The method further includes patterning the metal layer with an etch chemistry that is damaging to the organic insulator layer.
摘要:
A method of forming at least one Micro-Electro-Mechanical System (MEMS) includes forming a lower wiring layer on a substrate. The method further includes forming a plurality of discrete wires from the lower wiring layer. The method further includes forming an electrode beam over the plurality of discrete wires. The at least one of the forming of the electrode beam and the plurality of discrete wires are formed with a layout which minimizes hillocks and triple points in subsequent silicon deposition.
摘要:
Interconnect structures that include a passive element, such as a thin film resistor or a metal-insulator-metal (MIM) capacitor, methods for fabricating an interconnect structure that includes a passive element, and design structures embodied in a machine readable medium for designing, manufacturing, or testing an integrated circuit, such as a radiofrequency integrated circuit. A top surface of a dielectric layer is recessed relative to a top surface of a conductive feature in the dielectric layer. The passive element is formed on the recessed top surface of the dielectric layer and includes a layer of a conductive material that is coplanar with, or below, the top surface of the conductive feature.
摘要:
Methods for fabricating a back-end-of-line (BEOL) wiring structure, BEOL wiring structures, and design structures for a BEOL wiring structure. The BEOL wiring may be fabricated by forming a first wire in a dielectric layer and annealing the first wire in an oxygen-free atmosphere. After the first wire is annealed, a second wire is formed in vertical alignment with the first wire. A final passivation layer, which is comprised of an organic material such as polyimide, is formed that covers an entirety of a sidewall of the second wire.
摘要:
A MIM capacitor device and method of making the device. The device includes an upper plate comprising one or more electrically conductive layers, a dielectric block comprising one or more dielectric layers, a lower plate comprising one or more electrically conductive layer; and a spreader plate comprising one or more electrically conductive layers.
摘要:
A semiconductor device includes a semiconductor island having at least one electrical dopant atom and encapsulated by dielectric materials including at least one dielectric material layer. At least two portions of the at least one dielectric material layer have a thickness less than 2 nm to enable quantum tunneling effects. A source-side conductive material portion and a drain-side conductive material portion abuts the two portions of the at least one dielectric material layer. A gate conductor is located on the at least one dielectric material layer between the source-side conductive material portion and the drain-side conductive material portion. The potential of the semiconductor island responds to the voltage at the gate conductor to enable or disable tunneling current through the two portions of the at least one dielectric material layer. Design structures for the semiconductor device are also provided.
摘要:
The disclosure relates generally to semiconductor device fabrication, and more particularly to methods of electroplating used in semiconductor device fabrication. A method of electroplating includes: immersing an in-process substrate into an electrolytic plating solution to form a first metal layer on the in-process substrate; then performing a first chemical-mechanical polish to a liner on the in-process substrate followed by immersing the in-process substrate into the electrolytic plating solution to form a second metal layer on the first metal layer and the liner; and performing a second chemical-mechanical polish to the liner.