摘要:
A releasable buried layer for 3-D fabrication and methods of manufacturing is disclosed. The method includes forming an interposer structure which includes forming a carbon rich dielectric releasable layer over a wafer. The method further includes forming back end of the line (BEOL) layers over the carbon rich dielectric layer, including wiring layers and solder bumps. The method further includes bonding the solder bumps to a substrate using flip chip processes. The flip chip processes comprises reflowing the solder bumps and rapidly cooling down the solder bumps which releases the carbon rich dielectric releasable layer from the wafer.
摘要:
Structures with improved solder bump connections and methods of fabricating such structures are provided herein. The structure includes a via formed in a dielectric layer to expose a contact pad and a capture pad formed in the via and over the dielectric layer. The capture pad has openings over the dielectric layer to form segmented features. The solder bump is deposited on the capture pad and the openings over the dielectric layer.
摘要:
A method for forming an electrical structure. The electrical structure comprises an interconnect structure and a substrate. The substrate comprises an electrically conductive pad and a plurality of wire traces electrically connected to the electrically conductive pad. The electrically conductive pad is electrically and mechanically connected to the interconnect structure. The plurality of wire traces comprises a first wire trace, a second wire trace, a third wire trace, and a fourth wire trace. The first wire trace and second wire trace are each electrically connected to a first side of the electrically conductive pad. The third wire trace is electrically connected to a second side of the electrically conductive pad. The fourth wire trace is electrically connected to a third side of said first electrically conductive pad. The plurality of wire traces are configured to distribute a current.
摘要:
A controlled collapse chip connection (C4) method and integrated circuit structure for lead (Pb)-free solder balls with stress relief to the underlying insulating layers of the integrated circuit chip by disposing soft thick insulating cushions beneath the solder balls and connecting the metallization of the integrated circuit out-of-contact of the cushions but within the pitch of the solder balls.
摘要:
A structure and method of making an offset-trench crackstop, which forms an air gap in a passivation layer that is adjacent to a passivated top metal layer of a metal crackstop in an integrated circuit (IC) die. The offset-trench crackstop may expose a portion of a topmost dielectric layer in the crackstop region, not expose a topmost patterned metal layer of the metal crackstop, and may be interposed between the metal crackstop and an active device region. Alternatively, the offset-trench crackstop may expose a portion of the topmost dielectric layer, which separates an outermost metal layer and an innermost metal layer of the metal crackstop, and does not expose any of the topmost patterned metal layer of the metal crackstop, where the innermost metal layer of the metal crackstop is interposed between the offset-trench crackstop in the crackstop region and the active device region of the IC die.
摘要:
An integrated circuit (IC) chip including solder structures for connection to a package substrate, an IC chip package, and a method of forming the same are disclosed. In an embodiment, an IC chip is provided comprising a wafer having a plurality of solder structures disposed above the wafer. A ball limiting metallurgy (BLM) layer is disposed between each of the plurality of solder structures and the wafer. At least one of the plurality of solder structures has a first diameter and a first height, and at least one other solder structure has a second diameter and a second height. The differing heights and volumes of solder structures facilitate solder volume compensation for chip join improvement on the IC chip side rather than the package side.
摘要:
Structures with improved solder bump connections and methods of fabricating such structures are provided herein. The method includes forming a plurality of trenches in a dielectric layer extending to an underlying metal layer. The method further includes depositing metal in the plurality of trenches to form discrete metal line islands in contact with the underlying metal layer. The method also includes forming a solder bump in electrical connection to the plurality of metal line islands.
摘要:
A structure. The structure includes: a first dielectric layer which includes a top dielectric surface; an electrically conductive line on the first dielectric layer; a second dielectric layer on the first dielectric layer and the electrically conductive line; a ball-limiting-metallurgy (BLM) region on the second dielectric layer and the electrically conductive line such that the BLM region is electrically connected to the electrically conductive line; and a solder ball on the BLM region. The BLM region has a characteristic that a length of the longest straight line segment which is parallel to the top dielectric surface and is entirely in the BLM region does not exceed a pre-specified maximum value, wherein the pre-specified maximum value is at most one-half of a maximum horizontal dimension of the BLM region measured in a horizontal direction parallel to the top dielectric surface.
摘要:
Solder bump connections and methods for fabricating solder bump connections. The method includes forming a layer stack containing first and second conductive layers, forming a dielectric passivation layer on a top surface of the second conductive layer, and forming a via opening extending through the dielectric passivation layer to the top surface of the second conductive layer. The method further includes forming a conductive plug in the via opening. The solder bump connection includes first and second conductive layers comprised of different conductors, a dielectric passivation layer on a top surface of the second conductive layer, a via opening extending through the dielectric passivation layer to the top surface of the second conductive layer, and a conductive plug in the via opening.
摘要:
A topographical feature is formed proximate to a conductive bond pad that is used to couple a solder bump to a semiconductor die. The topographical feature is separated from the conductive bond pad by a gap. In one embodiment, the topographical feature is formed at a location that is slightly beyond the perimeter of the solder bump, wherein an edge of the bump is aligned vertically to coincide with the gap separating the conductive bond pad from the topographical feature. The topographical feature provides thickness enhancement of a non-conductive layer disposed over the semiconductor die and the conductive bond pad and stress buffering.