Abstract:
A method of making a magnetic random access memory (MRAM) device includes depositing a spacer material on an electrode; forming a magnetic tunnel junction (MTJ) on the spacer material that includes a reference layer in contact with the spacer material, a free layer, and a tunnel barrier layer; patterning a hard mask on the free layer; etching the MTJ and the spacer material to transfer a pattern of the hard mask into the MTJ and the spacer material; forming an insulating layer along a sidewall of the hard mask, the MTJ, and the spacer material; disposing an interlayer dielectric (ILD) on and around the hard mask, MTJ, and spacer material; etching through the ILD to form a trench that extends to a surface and sidewall of the hard mask and a sidewall of a portion of the MTJ; and disposing a metal in the trench to form a contact electrode.
Abstract:
According to an embodiment of the invention, a method of making a magnetic random access memory device includes: forming a magnetic tunnel junction on an electrode, the magnetic tunnel junction comprising a reference layer positioned in contact with the electrode, a tunnel barrier layer arranged on the reference layer, and a free layer arranged on the tunnel barrier layer; depositing an encapsulating layer on and along sidewalls of the magnetic tunnel junction; depositing an interlayer dielectric layer on the encapsulating layer disposed on the magnetic tunnel junction; annealing the magnetic tunnel junction; and implanting hydrogen in a portion of the magnetic tunnel junction. According to another embodiment of the invention, implanting of hydrogen in a portion of the magnetic tunnel junction occurs after forming a magnetic tunnel junction trench. An MRAM device with hydrogen atoms incorporated in a portion of the magnetic tunnel junction is also disclosed.
Abstract:
A method of making a field-effect transistor device includes providing a substrate with a fin stack having: a first sacrificial material layer on the substrate, a first semiconductive material layer on the first sacrificial material layer, and a second sacrificial material layer on the first semiconductive material layer. The method includes inserting a dummy gate having a second thickness, a dummy void, and an outer end that is coplanar to the second face. The method includes inserting a first spacer having a first thickness and a first void, and having an outer end that is coplanar to the first face. The method includes etching the first sacrificial material layer in the second plane and the second sacrificial material layer in the fourth plane. The method includes removing, at least partially, the first spacer. The method also includes inserting a second spacer having the first thickness.
Abstract:
In one aspect, a method of fabricating a bipolar transistor device on a wafer includes the following steps. Fin hardmasks are formed on the wafer. A dummy gate is formed on the wafer, over the fin hardmasks. The wafer is doped to form emitter and collector regions on both sides of the dummy gate. A dielectric filler layer is deposited onto the wafer and the dummy gate is removed selective to the dielectric filler layer so as to form a trench in the filler layer. Fins are patterned in the wafer using the fin hardmasks exposed within the trench, wherein the fins will serve as a base region of the bipolar transistor device. The fins are recessed in the base region. The base region is re-grown from an epitaxial SiGe, Ge or III-V semiconductor material. A contact is formed to the base region.
Abstract:
Techniques for integrating low temperature salicide formation in a replacement gate device process flow are provided. In one aspect, a method of fabricating a FET device is provided that includes the following steps. A dummy gate(s) is formed over an active area of a wafer. A gap filler material is deposited around the dummy gate. The dummy gate is removed selective to the gap filler material, forming a trench in the gap filler material. A replacement gate is formed in the trench in the gap filler material. The replacement gate is recessed below a surface of the gap filler material. A gate cap is formed in the recess above the replacement gate. The gap filler material is etched back to expose at least a portion of the source and drain regions of the device. A salicide is formed on source and drain regions of the device.
Abstract:
A method to prevent a gate contact from electrically connecting to a source contact for a plurality of memory cells on a substrate. The method includes depositing and etching gate material to partially fill a space between the pillars and to form a word line for the memory cells, etching a gate contact region for the word line between the pair of pillars, forming a spacer of electrically insulating material in the gate contact region, and depositing a gate contact between the pair of pillars to be in electrical contact with the gate material such that the spacer surrounds the gate contact.