Abstract:
A packaged transistor device (100) comprises a semiconductor chip (101) including a transistor with terminals distributed on the first and the opposite second chip side; and a slab (110) of low-grade silicon (l-g-Si) configured as a ridge (111) framing a depression including a recessed central area suitable to accommodate the chip, the ridge having a first surface in a first plane and the recessed central area having a second surface in a second plane spaced from the first plane by a depth (112) at least equal to the chip thickness, the ridge covered by device terminals (120; 121) connected to attachment pads in the central area having the terminals of the first chip side attached so that the terminals (103) of the opposite second chip side are co-planar with the device terminals on the slab ridge.
Abstract:
A self-powered electronic system comprises a first chip (401) of single-crystalline semiconductor embedded in a second chip (302) of single-crystalline semiconductor shaped as a container bordered by ridges. The assembled chips are nested and form an electronic device assembled, in turn, in a slab of weakly p-doped low-grade silicon shaped as a container (330) bordered by ridges (331). The flat side (335) of the slab includes a heavily n-doped region (314) forming a pn-junction (315) with the p-type bulk. A metal-filled deep silicon via (350) through the p-type ridge (331) connects the n-region with the terminal (322) on the ridge surface as cathode of the photovoltaic cell with the p-region as anode. The voltage across the pn-junction serves as power source of the device.
Abstract:
A power supply system has a leadframe with leads and a pad. The pad surface facing a circuit board has a portion recessed with a depth and an outline suitable for attaching side-by-side the sync and the control FET semiconductor chips. The input terminal of the control FET and the grounded output terminal of the sync FET are coplanar with the un-recessed portion of the pad (switch node terminal) so that all terminals can be directly attached to contacts of a circuit board. A driver-and-control chip is vertically stacked to the opposite pad surface and encapsulated in a packaging compound.
Abstract:
An electronic multi-output device has a substrate including a first pad, a second pad and a plurality of pins. A first chip with a first transistor has a first terminal on one chip surface and a second and third terminals on the opposite chip surface. The first chip with its first terminal is tied to the first pad. A second chip with a second transistor has a first terminal on one chip surface and a second and third terminals on the opposite chip surface. The second chip with its first terminal is tied to the second pad. The second terminals are connected by a discrete first metal clip and a second metal clip to respective substrate pins. A composite third chip has a third and a fourth transistor integrated so that the first terminals of the transistors are on one chip surface. The second terminals are merged into a common terminal. The patterned third terminals are on the opposite chip surface. The first terminals are vertically attached to the first and second metal clips, respectively. The common terminal is connected by a common clip to a substrate pin.
Abstract:
A packaged electronic system comprises a slab (210) of low-grade silicon (l-g-Si) configured as ridges (114) framing a depression of depth (112) including a recessed central area suitable to accommodate semiconductor chips and embedded electrical components, the depth at least equal to the thickness of the chips and the components, the ridge covered by system terminals (209b) connected to attachment pads in the central area; and semiconductor chips (120, 130) having a thickness and terminals on at least one of opposing chip sides, the chips terminals attached to the central area terminals so that the opposite chip side is coplanar with the system terminals on the slab ridge.
Abstract:
An electronic system comprises a first chip (101) of single-crystalline semiconductor including a first electronic device embedded in a second chip (102) of single-crystalline semiconductor shaped as a container having a slab (104) bordered by ridges (103), and including a second electronic device. The nested chips are assembled in a container of low-grade silicon shaped as a slab 130 bordered by retaining walls 131 and including conductive traces and terminals. The first electronic device is connected to the second electronic device by attaching the first chip onto the slab of the second chip; and the first and second electronic devices are connected to the container by embedding the second chip in the container, wherein the nested first and second chips operate as an electronic system and the container operates as the package of the system. For first and second devices as field effect transistors, the system is a power block.
Abstract:
A power supply system (200) has a QFN leadframe with leads and a pad (201). The pad surface facing a circuit board has a portion recessed with a depth (270) and an outline suitable for attaching side-by-side the sync (210) and the control (220) FET semiconductor chips. The input terminal (220a) of the control FET and the grounded output terminal (210a) of the sync FET are coplanar with the un-recessed portion of the pad (switch node terminal) so that all terminals can be directly attached to contacts of a circuit board. A driver-and-control chip (230) is vertically stacked to the opposite pad surface and encapsulated in a packaging compound (290).