摘要:
Methods of manufacture and devices for performing active biological operations utilize various structures to advantageously collect and provide charged biological materials to an array of microlocations. In one embodiment, a device includes focusing electrodes to aid in the direction and transport of materials from a collection electrode to an array. Preferably, one or more intermediate transportation electrodes are utilized, most preferably of monotonically decreasing size between the collection electrode and the array, so as to reduce current density mismatches. In another aspect, a flow cell is utilized over devices to provide containment of solution containing materials to be analyzed. Preferably, the volume of the flow cell is more advantageously interrogated through use of relatively large collection and return electrodes, such as where the area of those electrodes relative to the footprint of the flowcell is at least 40%. In yet another embodiment, a first collection electrode is disposed adjacent an array, with a second collection electrode disposed on the at least an opposite portion of the array. Preferably, the combined area of the collection electrodes is a substantial fraction, preferably at least 50% of the area of the footprint of the flow cell. In yet another embodiment, a concentric ring design is provided. Various flip chip embodiments are disclosed.
摘要:
A target molecule at a binding site is detected using an optical waveguide having a surface proximate to the binding site, and a waveguide detector coupled to the optical waveguide. An incident light beam is applied to the binding site along an axis transverse to the surface of the optical waveguide. The incident light beam impinges an optical indicator associated with the target molecule to form secondary light which is coupled into the optical waveguide. The secondary light is detected by the waveguide detector to thereby detect the target molecule.
摘要:
A microcavity LED with photon recycling including a substrate having at least one layer of material positioned thereon, and a first cladding layer, a second cladding layer and an active region sandwiched therebetween forming a mesa on the layer of material. The mesa has generally vertical sides and an upper surface with an electrically conductive and light reflective system positioned on the vertical sides of the mesa and partially covering the upper surface to form a first electrical contact for the LED, the electrically conductive and light reflective system defining a centrally located light emitting opening on the surface of the mesa, the mesa having a diametric dimension of the surface greater than one time larger than a diametric dimension of the opening.
摘要:
An article and method for making a plastic molded optoelectronic interface are provided. A leadframe having a first segment and a second segment with the first segment having a first tab and the second segment having a second tab is provided. The first and the second tabs extend away from the first segment and the second segment, respectively, and toward each other. The first segment and the second segment are positioned in a parallel configuration with the first and second tabs pointing toward each other. A first optical portion having a reflective surface with an angle is formed between the first tab of the first segment and the second tab of the second segment. A second optical portion that surrounds the first optical portion is formed.
摘要:
A superluminescent edge emitting device is fabricated to have apparent vertical light emission. The superluminescent device is comprised of a semiconductor supporting structure having a major surface. A light emitting portion is formed above a first portion of the major surface, wherein the light emitting portion is configured in a substantially circular shape to suppress lasing and has sidewalls, and wherein light is emitted from the sidewalls of the light emitting portion. An non-emitting portion is formed above a second portion of the major surface and adjacent to the light emitting portion, wherein the non-emitting portion has sidewalls, and wherein the sidewalls of the light emitting portion and the sidewalls of the non-emitting portion are configured to direct the light emitted from the light emitting portion substantially perpendicular to the major surface.
摘要:
A sensor (10,30,40,50,70) for detecting chemicals and changes in the surrounding environment utilizes a sol-gel sensor element (14,16,17,54,56,57) containing a chemical indicator. Grooves (12,13,24,52,53) are formed in a substrate (11,51). The grooves are filled with a sol-gel material having a chemical indicator, and the sol-gel is cured to adhere to the substrate (11,51). The grooves (12,13,24,52,53) are formed to facilitate optically coupling a fiber optic cable (46) to the sol-gel sensor element. Light is coupled from the fiber optic cable (46) to the sol-gel sensor element (14,16,17,54,56,57).
摘要:
A method of fabricating VCSELs including the steps of epitaxially growing a first mirror stack of a first conductivity type, an active region on the first mirror stack, and a first portion of a second mirror stack of a second conductivity type on the active region. A dielectric layer is then formed on the first portion of the second mirror stack, patterned to define an operating region and a remaining portion of the second mirror stack is epitaxially grown on the first portion to form a complete second mirror stack. Portions of the second mirror stack overlying the dielectric layer are polycrystalline in formation and substantially limit the remaining portion of the second mirror stack to the operating region. The polycrystalline layers can then be removed and electrical contacts formed.
摘要:
A vertical cavity surface emitting laser (VCSEL) having sensing capabilities is fabricated by forming a layer having the capability to change the threshold current of the VCSEL. This can be accomplished by forming a deformable membrane or a cantilevered beam on the VCSEL. The deformation of movement of the beam causes a change in the threshold current of the VCSEL, so that it can go from lasing to nonlasing or vice versa. In addition, a layer which changes reflectivity in the presence of a particular chemical can also be formed on the VCSEL to produce the same result.
摘要:
A superluminescent surface light emitting device comprising a mirror layer (19) formed on a surface of a semiconductor substrate (22). Above the mirror (19) is a light emitting region (16). A second mirror (12) is located in a plane above the light emitting region (16). The combined reflectivities of the mirrors (19,12) are selected such that light is emitted in the superluminescent operating mode in a direction perpendicular to the surface of the device. An implanted region (14) may be used to improve superluminescent operation.
摘要:
A VCSEL formed on a substrate with an upper mirror stack etched to form a mesa shaped area with material positioned on the upper mirror stack including optically transparent, electrically conductive material defining an electrical contact window to control current distribution within the laser, and material positioned on the surface of the mesa shaped area with an optical thickness selected to provide a desired mirror reflectivity profile which controls the optical mode independently of the mesa edges, thereby, providing separate control of the current and the optical mode.