Abstract:
A fabrication method of a coreless packaging substrate is provided, including the steps of: forming an inner built-up circuit board on a carrier; removing the carrier; and symmetrically forming a first outer built-up structure and a second outer built-up structure on top and bottom surfaces of the inner built-up circuit board, respectively. The present invention effectively increases the product yield, saves the fabrication cost, and reduces wastes.
Abstract:
A package structure includes a metal sheet having perforations; a semiconductor chip having an active surface and an opposite inactive surface, wherein the active surface has electrode pads thereon, conductive bumps are disposed on the electrode pads, the semiconductor chip is combined with the metal sheet via the inactive surface thereof, a protective buffer layer is formed on the active surface to cover the conductive bumps, and the perforations are arranged around a periphery of the inactive surface of the semiconductor chip; an encapsulant formed on the metal sheet and in the perforations, for encapsulating the semiconductor chip and exposing the protective buffer layer; and a circuit fan-out layer formed on the encapsulant and the protective buffer layer and having conductive vias penetrating the protective buffer layer and electrically connecting to the conductive bumps. A method of fabricating the package structure and a package-on-package device including the package structure are also provided.
Abstract:
A packaging substrate is provided, wherein a plurality of conductive posts together with a conductive bonding layer formed thereon form a plurality of external connection structures with the same height, thereby preventing tilted stack structures and poor coplanarity in a subsequent stacking process.
Abstract:
A method for fabricating a packaging substrate includes: stacking two metal layers;encapsulating the two metal layers with assistant dielectric layers; forming built-up structures on the assistant dielectric layers, respectively; and separating the built-up structures along the interface between the two metal layers so as to form two packaging substrates. Owing to the adhesive characteristic of the assistant dielectric layers, the two metal layers are unlikely to separate from each other during formation of the built-up structures. But after portions of the dielectric layer around the periphery of the metal layers are cut and removed, the two metal layers can be readily separated from each other. The two metal layers can be patterned to form wiring layers, metal bumps, or supporting structures to avoid waste of materials. A packaging substrate and a fabrication method thereof are provided.
Abstract:
Provided are a circuit board structure and a fabrication method thereof, including the steps of: forming a first circuit layer in a first dielectric layer and exposing the first circuit layer therefrom; forming a second dielectric layer on the first dielectric layer and the first circuit layer, and forming a second circuit layer on the second dielectric layer; forming a plurality of first conductive vias in the second dielectric layer for electrically connecting to the first circuit layer to thereby dispense with a core board and electroplated holes and thus facilitate miniaturization. Further, the first dielectric layer is liquid before being hardened and is formed on the first dielectric layer that enhances the bonding between layers of the circuit board and the structure.