Abstract:
Electric vehicle thermal management systems and electric vehicles using the thermal management system, are disclosed. A passenger cabin is heated by the heat dissipated from a battery and/or a motor. A cooling circuit in the management system fluidly connects the battery, the motor and a first radiator in series. The first radiator provides a heat source to the passenger cabin by means of the heat dissipated from the battery and/or the electric motor. Under certain conditions, the electric motor is selectively separated from the cooling circuit, so that when the passenger cabin needs to be heated, the thermal management system can provide heat to the passenger cabin without affecting the heat dissipation of the battery.
Abstract:
An installation for charging electric cars includes the following features: charging columns, direct-current lines, rectifiers, three-phase alternating-current lines, a single-phase alternating-current line and a cooling arrangement. The direct-current lines electrically connect the charging columns to the rectifiers. The three-phase alternating-current lines electrically connect the rectifiers to a medium-voltage transformer. The single-phase alternating-current line electrically connects the medium-voltage transformer to the cooling arrangement.
Abstract:
A battery pack having a battery pack housing defining an interior region is provided. The housing further includes an inlet aperture and an outlet aperture communicating with the interior region. The battery pack further includes a battery module that is disposed in the interior region of the battery pack housing proximate to the inlet aperture. The battery module has a first battery cell, a heat exchanger, and first and second end plates. The first battery cell and the heat exchanger are disposed against one another, and are further disposed between the first and second end plates. The heat exchanger defines a first flow path portion therethrough. The first end plate has a first end portion that extends longitudinally past the first end of the first battery cell, and a second end portion that extends longitudinally past the second end of the first battery cell.
Abstract:
Electric vehicle thermal management systems and electric vehicles using the thermal management system, are disclosed. A passenger cabin is heated by the heat dissipated from a battery and/or a motor. A cooling circuit in the management system fluidly connects the battery, the motor and a first radiator in series. The first radiator provides a heat source to the passenger cabin by means of the heat dissipated from the battery and/or the electric motor. Under certain conditions, the electric motor is selectively separated from the cooling circuit, so that when the passenger cabin needs to be heated, the thermal management system can provide heat to the passenger cabin without affecting the heat dissipation of the battery.
Abstract:
A portable electronic device and a battery pack for the portable electronic device are provided. The portable electronic device includes a Printed Circuit Board (PCB) in which at least one electronic component is disposed, and a battery pack including a heat conductor separately disposed at a gap from the PCB and that transfers heat generated in the electronic component to a battery cell.
Abstract:
A cooling structure of a seat and an electronic module is provided. The cooling structure includes a cooling fan module that is mounted at a lower portion of the seat and generates air flow. An electronic module operating as a heating element is disposed at a lower portion of the cooling fan module. A flow path control valve is disposed at an upper portion of the cooling fan module to selectively convert a flow direction of air flowing in towards an upper end of the cooling fan module. The electronic module is thus continuously cooled and the seat is selectively cooled while the cooling fan module operates.
Abstract:
An electronic apparatus includes a heat generating component, a first battery, a second battery, a heat conductive sheet, and a heat insulating layer. The second battery is disposed between the heat generating component and the first battery. The heat conductive sheet thermally couples the heat generating component to the first battery. The heat insulating layer is disposed between the heat conductive sheet and the second battery.
Abstract:
A battery module including a first positive terminal, a second positive terminal, a ground terminal, a power conversion circuit, and a power assembly. The power assembly includes a plurality of battery cells coupled in series and disposed in a stacked orientation relative to each other and configured to output a first voltage between the first positive terminal and the ground terminal. The power conversion circuit is electrically coupled to the power assembly and configured to receive the first voltage as an input and to output a second voltage different from the first voltage. The second positive terminal is electrically coupled to the power conversion circuit to receive the second voltage from the power conversion circuit.
Abstract:
A vehicle includes a drive motor, a battery, a front seat, a rear seat, a passenger-compartment air conditioning unit, an inlet port, a blower, a temperature sensor and a controller. The controller is configured to control the passenger-compartment air conditioning unit so as to selectively perform a first air conditioning mode, a second air conditioning mode, and a third air conditioning mode. The controller is configured to control the passenger-compartment air conditioning unit so as to perform the third air conditioning mode when the temperature of the battery is higher than a first temperature threshold.
Abstract:
A battery and an electrical apparatus accommodated in a battery pack body (1, 4) are effectively cooled. The battery pack body (1, 4) includes a battery region in which a battery module (2) is accommodated and an electrical apparatus region in which the electrical apparatus is accommodated. An air-suction portion (3) and an air-exhaust portion (37) are formed in the battery pack body (1, 4). Air which flows through the air-suction portion (36) is made to flow in the battery pack body (1, 4), thereby cooling the battery module (2) and the electrical apparatus and then, the air is made to flow out through the air-exhaust portion (37). The electrical apparatus region includes an electrical apparatus cover (27) which covers at least a portion of the electrical apparatus and which branches air which is sucked through the air-suction portion.