Abstract:
Apparatus for physical vapor deposition are provided. In some embodiments, an apparatus for use in a physical vapor deposition substrate processing chamber includes a process shield having a central opening passing through a body of the process shield and defining a processing volume of the substrate processing chamber, wherein the process shield comprises an annular dark space shield fabricated from a ceramic material and an annular ground shield fabricated from a conductive material, and wherein a ratio of a length of the annular dark space shield to a length of the annular ground shield is about 1:2 to about 1:1.6.
Abstract:
In some embodiments a method of processing a substrate disposed atop a substrate support in a physical vapor deposition process chamber includes: (a) depositing a dielectric layer to a first thickness atop a first surface of the substrate via a physical vapor deposition process; (b) providing a first plasma forming gas to a processing region of the physical vapor deposition process chamber, wherein the first plasma forming gas comprises hydrogen but not carbon; (c) providing a first amount of bias power to a substrate support to form a first plasma from the first plasma forming gas within the processing region of the physical vapor deposition process chamber; (d) exposing the dielectric layer to the first plasma; and (e) repeating (a)-(d) to deposit the dielectric film to a final thickness.
Abstract:
Embodiments described herein provide a semiconductor device and methods and apparatuses of forming the same. The semiconductor device includes a substrate having a source and drain region and a gate electrode stack on the substrate between the source and drain regions. In one embodiment, the method includes positioning a substrate within a processing chamber, wherein the substrate includes a source and drain region, a gate dielectric layer between the source and drain regions, and a conductive film layer on the gate dielectric layer. The method also includes depositing a refractory metal nitride film layer on the conductive film layer, depositing a silicon-containing film layer on the refractory metal nitride film layer, and depositing a tungsten film layer on the silicon-containing film layer.
Abstract:
A dual magnetron particularly useful for RF plasma sputtering includes a radially stationary open-loop magnetron comprising opposed magnetic poles and rotating about a central axis to scan an outer region of a sputter target and a radially movable open-loop magnetron comprising opposed magnetic poles and rotating together with the stationary magnetron. During processing, the movable magnetron is radially positioned in the outer region with an open end abutting an open end of the stationary magnetron to form a single open-loop magnetron. During cleaning, part of the movable magnetron is moved radially inwardly to scan and clean an inner region of the target not scanned by the stationary magnetron. The movable magnetron can be mounted on an arm pivoting about an axis at periphery of a rotating disk-shaped plate mounting the stationary magnetron so the arm centrifugally moves between radial positions dependent upon the rotation rate or direction.
Abstract:
Methods of forming copper interconnects are described. A doped tantalum nitride layer formed on a copper layer on a substrate has a first amount of dopant. The doped tantalum nitride layer is exposed to a plasma comprising one or more of helium or neon to form a treated doped tantalum nitride layer with a decreased amount of dopant. Apparatus for performing the methods are also described.
Abstract:
Exemplary semiconductor processing methods may include providing a substrate to a processing region of a semiconductor processing chamber. The substrate may include an alternating stack of materials. A feature may extend through the alternating stack of materials. One material of the alternating stack of materials may include a silicon-containing material. A native oxide material may be disposed on at least a portion of exposed surfaces of the silicon-containing material. The methods may include performing a pre-clean treatment on the substrate. The methods may include providing a fluorine-containing precursor to the processing region. The methods may include contacting the substrate with the fluorine-containing precursor, wherein the contacting removes native oxide from the silicon-containing material.
Abstract:
A method for dielectric filling of a feature on a substrate yields a seamless dielectric fill with high-k for narrow features. In some embodiments, the method may include depositing a metal material into the feature to fill the feature from a bottom of the feature wherein the feature has an opening ranging from less than 20 nm to approximately 150 nm at an upper surface of the substrate and wherein depositing the metal material is performed using a high ionization physical vapor deposition (PVD) process to form a seamless metal gap fill and treating the seamless metal gap fill by oxidizing/nitridizing the metal material of the seamless metal gap fill with an oxidation/nitridation process to form dielectric material wherein the seamless metal gap fill is converted into a seamless dielectric gap fill with high-k dielectric material.
Abstract:
Methods and apparatus for processing substrates are disclosed. In some embodiments, a process chamber for processing a substrate includes: a body having an interior volume and a target to be sputtered, the interior volume including a central portion and a peripheral portion; a substrate support disposed in the interior volume opposite the target and having a support surface configured to support the substrate; a collimator disposed in the interior volume between the target and the substrate support; a first magnet disposed about the body proximate the collimator; a second magnet disposed about the body above the support surface and entirely below the collimator and spaced vertically below the first magnet; and a third magnet disposed about the body and spaced vertically between the first magnet and the second magnet. The first, second, and third magnets are configured to generate respective magnetic fields to redistribute ions over the substrate.
Abstract:
Described are microelectronic devices comprising a dielectric layer formed on a substrate, a feature comprising a gap defined in the dielectric layer, a barrier layer on the dielectric layer, a two metal liner film on the barrier layer and a gap fill metal on the two metal liner. Embodiments provide a method of forming a microelectronic device comprising the two metal liner film on the barrier layer.
Abstract:
A method of forming graphene layers is disclosed. The method includes precleaning the substrate with a plasma formed from an argon- and hydrogen-containing gas, followed by forming a graphene layer by exposing the substrate to a microwave plasma to form a graphene layer on the substrate. The microwave plasma comprises hydrocarbon and hydrogen radicals. The substrate is then cooled. A capping layer may also be formed.