Abstract:
A light emitting device includes a base, light sources, wall portions, and a half mirror. The base has a light reflecting surface and has a first side on which the light reflecting surface is provided. The light sources are mounted on the first side of the base. Each of the wall portions surrounds each of the plurality of light sources. The half mirror is to reflect a part of incident light and to transmit another part of the incident light. The half mirror is disposed opposite to the base such that the light sources are provided between the half mirror and the base.
Abstract:
A light-emitting module includes: a base body including electrical conductor wirings; a light-emitting element disposed on the base body and electrically connected to the electrical conductor wirings; a light reflection film disposed on an upper surface of the light-emitting element; and a half mirror disposed on a light extraction surface side of the light-emitting element and spaced apart from the light-emitting element. A spectral reflectance of the half mirror under perpendicular incidence at a wavelength longer than a peak emission wavelength of a light emitted from the light-emitting element is greater than a spectral reflectance of the half mirror under perpendicular incidence at the peak emission wavelength.
Abstract:
A light emitting device includes a substrate, a light emitting element, a light reflecting resin member, a sealing member, an electrically conductive wiring and a lens member. The light reflecting resin member surrounds the light emitting element. The sealing member is disposed in a region surrounded by the light reflecting resin member. The electrically conductive wiring is arranged on an upper surface of the substrate such that the substrate includes an exposed region exposed from the electrically conductive wiring with at least a part of the exposed region of the substrate being embedded in the light reflecting resin member. The lens member is disposed above the light emitting element to reach an outer edge of the substrate. The lens member is in contact with an upper surface of the sealing member and an upper surface and an outer lateral surface of the light reflecting resin member.
Abstract:
A semiconductor light emitting device including a substrate, an electrode and a light emitting region is provided. The substrate may have protruding portions formed in a repeating pattern on substantially an entire surface of the substrate while the rest of the surface may be substantially flat. The cross sections of the protruding portions taken along planes orthogonal to the surface of the substrate may be semi-circular in shape. The cross sections of the protruding portions may in alternative be convex in shape. A buffer layer and a GaN layer may be formed on the substrate.
Abstract:
A light emitting device includes a base, at least one light emitting element, and a light transmissive sealing member. The base has a conductor wiring. The at least one light emitting element is mounted on the base. The at least one light emitting element is electrically connected to the conductor wiring. The light transmissive sealing member includes a light diffusion material. The light transmissive sealing member covers the at least one light emitting element. The light transmissive sealing member has a projection shape. The projection shape has a substantially circular bottom surface facing the base and a height in a light axis direction of the at least one light emitting element. The height is greater than a diameter of the substantially circular bottom surface.
Abstract:
A method of manufacturing a light emitting device includes a first step of mounting a light emitting element on a substrate having a conductor wiring and electrically connecting the light emitting element with the conductor wiring, a second step of disposing a light reflecting resin which reflects light from the light emitting element to surround the light emitting element, and a third step of disposing a sealing member after hardening the light reflecting resin to cover the light emitting element.
Abstract:
A light emitting device includes a substrate, metallization, a light emitting element, conducting wire, light reflective resin, and insulating material. The metallization is provided on a surface of the substrate that is made of insulating substance. The light emitting element is mounted on the substrate. The conducting wire electrically connects the metallization and the light emitting element. The light reflective resin is provided on the substrate to reflect light from the light emitting element. The insulating material covers at least part of metallization surfaces. The insulating material is established to come in contact with a side of the light emitting element.
Abstract:
Provided is a light emitting device in which deterioration of the substrate member can be reduced. The light emitting device includes a base member mainly made of a resin, a plurality of wiring portions and arranged on the base member via an adhesive agent, a groove portion defined between adjacent wiring portions, and at least one light emitting element which is disposed straddling at least a part of the groove portion. The adhesive agent is applied covering the base member from the groove portion, and contains a light-shielding member. The light-shielding member shields the base member from light, for example at a specific wavelength, emitted from the at least one light emitting element.
Abstract:
A light emitting device includes a support member, a light emitting element, and an underfill material. The support member includes an insulating member and positive and negative electrically conductive wirings arranged on the insulating member. The electrically conductive wirings are insulated and separated from each other by an insulating region arranged between the positive and negative electrically conductive wirings. The insulating separation region includes a first region disposed on an outer side with respect to the light emitting element and a second region disposed directly under the light emitting element. The first region includes an underfill arranging portion in which an interval between the electrically conductive wirings is wider than in the second region. The underfill material is arranged to extend from the underfill arranging portion to the second region in a space formed between the support member and the light emitting element.
Abstract:
A light emitting element having a recess-protrusion structure on a substrate is provided. A semiconductor light emitting element 100 has a light emitting structure of a semiconductor 20 on a first main surface of a substrate 10. The first main surface of the substrate 10 has substrate protrusion portion 11, the bottom surface 14 of each protrusion is wider than the top surface 13 thereof in a cross-section, or the top surface 13 is included in the bottom surface 14 in a top view of the substrate. The bottom surface 14 has an approximately polygonal shape, and the top surface 13 has an approximately circular or polygonal shape with more sides than that of the bottom surface 14.