Abstract:
Disclosed is a semiconductor device with through-silicon vias (TSVs) that comprises a primary TSV group, a plurality of signal lines connected to the primary TSV group, a redundant TSV group and connection circuitry responsive to a control signal having a predetermined value to electrically connect the signal lines to the redundant TSV group.
Abstract:
A memory system having a serial data interface and a serial data path core for receiving data from and for providing data to at least one memory bank as a serial bitstream. Each half of the memory bank is divided into upper and lower sectors. Each sector provides data in parallel to a shared two-dimensional page buffer with an integrated self column decoding circuit. A serial to parallel data converter within the memory bank couples the parallel data from either half to the serial data path core. The shared two-dimensional page buffer with the integrated self column decoding circuit minimizes circuit and chip area overhead for each bank, and the serial data path core reduces chip area. Therefore a multiple memory bank system is implemented without a significant corresponding chip area increase when compared to a single memory bank system having the same density.
Abstract:
A circuit for clamping current in a charge pump is disclosed. The charge pump includes switching circuitry having a number of switching circuitry transistors. Each of first and second pairs of transistors in the circuit can provide an additional path for current from its associated one of the switching circuitry transistors during off-switching of that transistor so that a spike in current from the switching circuitry transistor is only partially transmitted through a path extending between the switching circuitry transistor and a capacitor of the charge pump.
Abstract:
A method and system for increasing the lifespan of a flash memory device by selectively erasing sub-blocks of a memory block. Each physical memory block of the flash memory device is dividable into at least two logical sub-blocks, where each of the at least two logical sub-blocks is erasable. Therefore, only the data of the logical sub-block is erased and reprogrammed while unmodified data in the other logical sub-block avoids unnecessary program/erase cycles. The logical sub-blocks to be erased are dynamically configurable in size and location within the block. A wear leveling algorithm is used for distributing data throughout the physical and logical sub-blocks of the memory array to maximize the lifespan of the physical blocks during programming and data modification operations.
Abstract:
Described herein is a structure and method of manufacturing for a memory device with a thin silicon body. The memory device may be a semiconductor comprising: a first dielectric of a first width; a second dielectric of a second width, the second width less than the first width; and a thin film polycrystalline silicon (poly-Si) on sidewalls of the second dielectric.
Abstract:
A method and apparatus for managing power in a hybrid vehicle is disclosed. The vehicle includes an engine, an electric motor, and an energy storage element coupled to the motor. The method involves receiving a request to supply operating power to drive the vehicle and responding to the request by selecting an apportionment of operating power between the engine and the motor from among a plurality of apportionments having respective operating costs such that the selected apportionment is associated with a minimum operating cost, the operating cost including at least an engine fuel consumption cost and a storage element lifetime cost. The method further involves causing power to be supplied by at least one of the engine and the motor in accordance with the selected apportionment.
Abstract:
A configurable memory subsystem includes a memory module with a circuit board having a first and a second memory-containing device (MCD) pair mounted thereto. Each MCD pair has a first MCD in communication with a second MCD. Each MCD has an input port, an output port, and a memory each communicating with a bridge. In response to a command, the bridge transfers at least one of a portion of a data packet from the input port to the output port or to the memory, or transfers a portion of a memory packet from the memory to the output port. A loop-back device receives the command and the data packet form the first MCD pair and transmits the command and data packet to the second MCD pair.
Abstract:
A Multiple-bit per Cell (MBC) non-volatile memory apparatus, method, and system wherein a controller for writing/reading data to/from a memory array controls polarity of data by selectively inverting data words to maximize a number of bits to be programmed within (M−1) virtual pages and selectively inverts data words to minimize a number of bits to be programmed in an Mth virtual page where M is the number of bits per cell. A corresponding polarity control flag is set when a data word is inverted. Data is selectively inverted according the corresponding polarity flag when being read from the M virtual pages. A number of the highest threshold voltage programming states in reduced. This provides tighter distribution of programmed cell threshold voltage, reduced power consumption, reduced programming time, and enhanced device reliability.
Abstract:
A method, system and apparatus for sharing internal power supplies in integrated circuit devices is described. A multiple device integrated circuit 200 including multiple integrated circuits 202-205 each having internal power supplies is contained in an enclosure 201. Integrated circuits 202-205 are described showing how to make external connection to internal power supplies. Connections 208-212 are provided to the internal power supplies of each of devices 202-205. Another embodiment 500 of the system provides for disablement of regulators in multiple integrated circuits 502, 503, and 504 by another integrated circuit 501 for power consumption reduction. The method FIG. 6 includes providing devices and connecting the internal power supplies together. An integrated circuit 501 with a power supply 400 adapted to the system and method with additional circuitry 308, 404 and 402 for disabling a regulator 306 is described.
Abstract:
A method and system for controlling an MBC configured flash memory device to store data in an SBC storage mode, or a partial MBC storage mode. In a full MBC storage mode, pages of data are programmed sequentially from a first page to an Nth page for each physical row of memory cells. Up to N virtual page addresses per row of memory cells accompany each page to be programmed for designating the virtual position of the page in the row. For SBC or partial MBC data storage, a flash memory controller issues program command(s) to the MBC memory device using less than the maximum N virtual page addresses for each row. The MBC memory device sequentially executes programming operations up to the last received virtual page address for the row.