Abstract:
Provided is a liquid curable resin composition which can produce transparent cured products with a high refractive index, high hardness, and superior abrasion resistance, and which can be suitably used as a coating material. The liquid curable resin composition comprises: (A) a poly-functional (meth)acrylic compound having at least three (meth) acryloyl groups in the molecule; (B) a reaction product obtained by the reaction of a compound having a polymerizable unsaturated group and alkoxysilyl group in the molecule and particles metal oxide, the metals being preferably selected from the group consisting of zirconium, antimony, zinc, tin, cerium, and titanium; and (C) a radiation polymerization initiator.
Abstract:
The invention pertains to a continuous process for the conversion of inorganic solid starting particles which either are amorphous or possess a degree of order into inorganic solid product particles which (a) when the starting particles are amorphous, possess a degree of order, or (b) when the starting particles possess a degree of order, possess a different order, a different degree of order, or no order, which product particles are suitable for use in or as a catalyst, in or as a carrier, or in or as an adsorbent, in which process the starting particles are dispersed in a liquid thus forming a suspension. The suspension flows through at least two separate conversion vessels (3) which are connected in series and the suspension is agitated in each of these vessels (3). The invention furthermore relates to an apparatus suitable for carrying out the process according to the invention. This invention allows the processing of suspension with a high Solids to Liquid Ratio.
Abstract:
A magnetic material having a magnetic layer on a surface of a tape wherein the magnetic layer comprises a solid matrix material and a nanostructured magnetic material.
Abstract:
Nanostructured non-stoichiometric materials are provided and electronic materials and their applications are discussed. More specifically, the uses of nanotechnology and nanostructured materials for electronic products.
Abstract:
Nanostructured non-stoichiometric materials are disclosed. Novel electromagnetic materials and their applications are discussed. More specifically, the specifications teach the use of nanotechnology and nanostructured materials for developing novel electrical devices and products.
Abstract:
The present invention relates to a single step process for the synthesis of nanoparticles of phase pure ceramic oxides of a single or a multi-component system comprising one or more metal ions. The process comprises preparing a solution containing all the required metal ions in stoichiometric ratio by dissolving their respective soluble salts in an organic solvent or in water, preparing a precursor, adjusting the nitrate/ammonia content in the system, and heating the system.
Abstract:
Particles are hydrophobicized by treatment with a compound containing amino and silane groups, followed by treatment with a silane compound containing a hydrophobic group. The invention is particularly useful for treating hydrophilic mineral particles. The treated particles can be used, for example, as fillers in polymer masterbatches.
Abstract:
This invention relates to a method of manufacturing a product based on a simple or mixed metal oxide, or silicon oxide, from a charge of one or more precursors comprising one or more organic precursors. These oxides can be, for example, oxides of Ti, Al, Mg, Th, Si, Ba, Bc or Zr etc. The method comprises bringing the charge of organo-metallic precursors into contact with a reaction medium that comprises supercritical C02, at a temperature of from 31 to 100° C. and a supercritical pressure of from 3×107 to 5×107 Pa, in order to form from the precursor, a product based on a simple or mixed metal oxide, or silicon oxide, from the reaction medium by reducing the pressure of the supercritical C02 to a pressure lower than the supercritical pressure.
Abstract:
Ion conducting solid electrolytes are constructed from nanoscale precursor material. Nanocrystalline powders are pressed into disc structures and sintered to the appropriate degree of densification. Metallic material is mixed with 0 to 65 vol % nanostructured electrolyte powders to form a cermet mix and then coated on each side of the disc and fitted with electrical leads. The electrical conductivity of a Ag/YSZ/Ag cell so assembled exhibited about an order of magnitude enhancement in oxygen ion conductivity. As an oxygen-sensing element in a standard O2/Ag/YSZ/Ag/N2 set up, the nanocrystalline YSZ element exhibited commercially significant oxygen ion conductivity at low temperatures. The invention can be utilized to prepare nanostructured ion conducting solid electrolytes for a wide range of applications, including sensors, oxygen pumps, fuel cells, batteries, electrosynthesis reactors and catalytic membranes.
Abstract translation:离子导电固体电解质由纳米级前体材料构成。 将纳米晶体粉末压制成盘状结构并烧结至适当的致密度。 将金属材料与0至65体积%的纳米结构电解质粉末混合以形成金属陶瓷混合物,然后涂覆在盘的每一侧并配有电引线。 如此组装的Ag / YSZ / Ag电池的电导率显示出氧离子电导率提高了一个数量级。 作为标准O2 / Ag / YSZ / Ag / N2中的氧传感元件,纳米晶体YSZ元件在低温下表现出商业上显着的氧离子传导性。 本发明可用于制备用于广泛应用的纳米结构离子导电固体电解质,包括传感器,氧气泵,燃料电池,电池,电合成反应器和催化膜。
Abstract:
Disclosed are amorphous precipitated silicas, silica gels, and amorphous carbons derived from biomass and methods of producing them with and without adhered or deposited amorphous carbons produced by acidifying a caustic silicate solution produced by caustic digestion of biomass ash containing silica with and without activated carbon, the ash being obtained from thermal pyrolysis of the biomass, the acidifying effective to produce a slurry of the precipitated silica and silica gels with and without adhered or deposited amorphous carbon, and separated from the slurry the precipitated silicas and silica gels with and without the adhered or deposited amorphous carbons. The properties of the precipitated silica with adhered or deposited carbon being within the range as utilized in rubber compositions thereby avoiding the blending of silica and carbon components for such use. The precipitated silicas and silica gels without adhered or deposited carbon having metal contaminants present in low concentrations which when used in formulation of chemical-mechanical-planerization slurries used in polishing silicon wafers in the manufacture of computer chips and other electronic devices do not contaminate the wafer and final chip product and the other electronic devices.