Abstract:
Exemplary apparatus for method for forming at least one spectral encoding endoscopy configuration. For example, it is possible to modify a spacer configuration and an lens optics configuration to have respective predetermined lengths, and also to modify a dispersive optics configuration to have a further predetermined length. Further, the modified spacer and modified lens optics configurations can be attached to one another to form a combined spacer-lens optics configuration. The modified dispersive optics configuration can be attached to a substrate to form to form a grating substrate configuration. Additionally, the combined spacer-lens optics configuration can be connected to an optical fiber, and the modified attached dispersed optics configuration can be connected to the modified attached lens optics configuration to form the spectral encoding endoscopy configuration(s) which can extends along a particular axis. The dispersive optics configuration can be modified to be at a predetermined angle with respect to the particular axis.
Abstract:
Characterizing, identifying, or diagnosing the type and/or nature of a sample or a tissue such as an abnormal growth using a Raman spectrum includes analyzing distinct spectral subintervals within the Raman spectrum in two distinct wavelength ranges, such as FP and HW wavelength ranges, to identify a match with one or more reference markers in one or both wavelength ranges; and from the match characterizing, identifying, or diagnosing the type and/or nature of the sample or tissue. FP and HW Raman spectra can be detected or acquired simultaneously using a single diffraction grating.
Abstract:
A spectrometer is provided, the spectrometer having an interferometer generating an interferogram by splitting an interferometer input signal between a reference arm and a variable delay arm, and introducing a delay between the split interferometer input signals prior to interfering the split interferometer input signals. The spectrometer additionally has a controllable delay element operable to adjust the delay introduced by the interferometer and a dispersive element outputting a plurality of narrowband outputs representative of a received broadband input signal. The interferometer and dispersive element are optically connected to output a plurality of narrowband interferograms representative of a spectra of a spectrometer input signal received by the spectrometer, and the plurality of narrowband interferograms are received by a detector array for analysis.
Abstract:
An optical probe comprising a light source providing a light that is directed along a first axis; a diffusive element positioned proximate to the light source to receive the light and to diffuse the light as it exits the diffusive element; and a directional optical element directing the light exiting the diffusive element along at least one of the first axis and a second axis generally perpendicular to the first axis to project the light out of the optical probe and onto a subject.
Abstract:
A method of fabricating a gas sensor on a substrate and a gas sensor fabricated on a substrate that includes optical and electronic components are described. The method includes fabricating a laser to output light over a range of wavelengths within a waveguide, fabricating a splitter to split the light output by the laser to a reference waveguide and to a detection waveguide, fabricating a reference cell to house the reference waveguide and a reference gas. An output of the reference waveguide is coupled to a first optical detector and an output of the detection waveguide is coupled to a second optical detector to identify or quantify an ambient gas.
Abstract:
A system and method for spectroscopic mapping, with configurable spatial resolution, of an object include a fiber optic bundle having a plurality of optical fibers arranged in a first array at an input end with each of the plurality of optical fibers spaced one from another and arranged in at least one linear array at an output end. A first mask defining a plurality of apertures equal to or greater in number than the plurality of optical fibers is positioned between an object to be imaged and the input end of the fiber optic bundle. An imaging spectrometer is positioned to receive light from the output end of the fiber optic bundle and to generate spectra of the object. A sensor associated with the imaging spectrometer converts the spectra to electrical output signals for processing by an associated computer.
Abstract:
Light from a direction (D) different from a predetermined direction is reflected by a tapered surface (21) so as to enter an optical fiber (4) for guiding light entering along the predetermined direction to an appliance. Light from the desired direction (D) may thereby be reflected by the tapered surface (21) according to the angle of the tapered surface (21) and may be made to enter the optical fiber (4). Accordingly, even in a case where the installation position of an optical measurement probe (1) is limited, if the angle of the tapered surface (21) is appropriately set, light from the desired direction (D) may be made to enter the optical fiber (4).
Abstract:
Techniques and mechanisms for a monolithic photonic integrated circuit (PIC) to provide spectrometry functionality. In an embodiment, the PIC comprises a photonic device, a first waveguide and a second waveguide, wherein one of the first waveguide and the second waveguide includes a released portion which is free to move relative to a substrate of the PIC. During a metering cycle to evaluate a material under test, control logic operates an actuator to successively configure a plurality of positions of the released portion relative to the photonic device. In another embodiment, light from the first waveguide is variously diffracted by a grating of the photonic device during the metering cycle, where portions of the light are directed into the second waveguide. Different wavelengths of light diffracted into the second waveguide may be successively detected, for different positions of the released portion, to determine spectrometric measurements over a range of wavelength.
Abstract:
A system and method for using near-infrared or short-wave infrared (SWIR) light sources between approximately 1.4-1.8 microns, 2-2.5 microns, 1.4-2.4 microns, 1-1.8 microns for active remote sensing or hyper-spectral imaging for detection of natural gas leaks or exploration sense the presence of hydro-carbon gases such as methane and ethane. Most hydro-carbons (gases, liquids and solids) exhibit spectral features in the SWIR, which may also coincide with atmospheric transmission windows (e.g., approximately 1.4-1.8 microns or 2-2.5 microns). Active remote sensing or hyper-spectral imaging systems may include a fiber-based super-continuum laser and a detection system and may reside on an aircraft, vehicle, handheld, or stationary platform. Super-continuum sources may emit light in the near-infrared or SWIR. An imaging spectrometer or a gas-filter correlation radiometer may be used to identify substances or materials such as oil spills, geology and mineralogy, vegetation, greenhouse gases, construction materials, plastics, explosives, fertilizers, paints, or drugs.
Abstract:
A liquid sample analyzer includes a liquid sample source, a flow cell, an optical device and a plurality of optical fibers. The flow cell is configured to receive a flow of a liquid sample from the liquid sample source. The plurality of optical fibers optically connect the flow cell to the optical device to transmit light between the flow cell and the optical device.