摘要:
The present invention discloses a method of heteroepitaxial growth enabling the successful growth of thin films of GaN and III-nitride semiconductor heterostructures of (0001) orientation with III metal-face polarity on diamond substrates being either polycrystalline or single crystal with various crystallographic orientations. The method uses a thin AlN nucleation layer on the diamond substrate with thickness equal or less than 5 nm, grown by Molecular Beam Epitaxy (MBE) using a nitrogen plasma source. The invention enables the development of very high power metal-face III-nitride devices, such as High Electron Mobility Transistors, on single crystal or polycrystalline diamond substrates. The method is also applicable for other element IV substrates with diamond crystal structure.
摘要:
The invention generally related to a method for preparing a layer of graphene directly on the surface of a substrate, such as a semiconductor substrate. The layer of graphene may be formed in direct contact with the surface of the substrate, or an intervening layer of a material may be formed between the substrate surface and the graphene layer.
摘要:
In a method for fabricating a graphene structure, there is formed on a fabrication substrate a pattern of a plurality of distinct graphene catalyst materials. In one graphene synthesis step, different numbers of graphene layers are formed on the catalyst materials in the formed pattern. In a method for fabricating a graphene transistor, on a fabrication substrate at least one graphene catalyst material is provided at a substrate region specified for synthesizing a graphene transistor channel and at least one graphene catalyst material is provided at a substrate region specified for synthesizing a graphene transistor source, and at a substrate region specified for synthesizing a graphene transistor drain. Then in one graphene synthesis step, at least one layer of graphene is formed at the substrate region for the graphene transistor channel, and at the regions for the transistor source and drain there are formed a plurality of layers of graphene.
摘要:
Passivation of group III-nitride hetero junction devices is described herein. The passivation facilitates simultaneous realization of effective/high current collapse suppression and low leakage current without the use of a sophisticated multiple-field plate technique. The passivation can be achieved by growing a charge-polarized. AlN thin film on the surface of a group III-nitride based heterojunction device by plasma-enhanced atomic layer deposition such that positive polarization charges are induced at the interface to compensate for a majority of negative charges at the interface.
摘要:
A heterostructure grown on a silicon substrate includes a single crystal rare earth oxide template positioned on a silicon substrate, the template being substantially crystal lattice matched to the surface of the silicon substrate. A heterostructure is positioned on the template and defines at least one heterojunction at an interface between a III-N layer and a III-III-N layer. The template and the heterostructure are crystal matched to induce an engineered predetermined tensile strain at the at least one heterojunction. A single crystal rare earth oxide dielectric layer is grown on the heterostructure so as to induce an engineered predetermined compressive stress in the single crystal rare earth oxide dielectric layer and a tensile strain in the III-III-N layer. The tensile strain in the III-III-N layer and the compressive stress in the REO layer combining to induce a piezoelectric field leading to higher carrier concentration in 2DEG at the heterojunction.
摘要:
A method of fabricating a nitride-based transistor includes sequentially forming a first nitride-based semiconductor layer doped with first type dopant, a second nitride-based semiconductor layer doped with at least one of a second type dopant, and a third nitride-based semiconductor layer doped with at least one of the first type dopants. A first trench is formed to penetrate the third and second nitride-based semiconductor layers and to extend into the first nitride-based semiconductor layer. A fourth nitride-based semiconductor layer doped with the first type dopants is formed to fill the first trench. A second trench is formed in the fourth nitride-based semiconductor layer. A gate electrode is formed in the second trench. A source electrode is formed to be electrically connected to at least one of the third and fourth nitride-based semiconductor layers, and a drain electrode is formed to be electrically connected to the first nitride-based semiconductor layer.
摘要:
A nitride semiconductor structure in which a first nitride semiconductor underlying layer is provided on a substrate having a recess portion and a projection portion provided between the recess portions at a surface thereof, the first nitride semiconductor underlying layer has at least 6 first oblique facet planes surrounding the projection portion on an outer side of the projection portion, and a second nitride semiconductor underlying layer buries the first oblique facet planes, a nitride semiconductor light emitting element, a nitride semiconductor transistor element, a method of manufacturing a nitride semiconductor structure, and a method of manufacturing a nitride semiconductor element are provided.
摘要:
An embodiment of a compound semiconductor device includes: a Si substrate; a Si oxide layer formed over a surface of the Si substrate; a nucleation layer formed over the Si oxide layer, the nucleation layer exposing a part of the Si oxide layer; and a compound semiconductor stacked structure formed over the Si oxide layer and the nucleation layer.
摘要:
The embodiments described herein generally relate to methods for forming an amorphous silicon structure that may be used in thin film transistor devices. In embodiments disclosed herein, the amorphous silicon layer is deposited using a silicon-based gas with an activation gas comprising a high concentration of inert gas and a low concentration of hydrogen-based gas. The activation gas combination allows for a good deposition profile of the amorphous silicon layer from the edge of the shadow frame which is translated to the polycrystalline silicon layer post-annealing.
摘要:
Embodiments described herein relate to a structure for III-V devices on silicon. A Group IV substrate is provided and a III-V structure may be formed thereon. The III-V structure generally comprises one or more buffer layers and a channel layer disposed on the one or more buffer layers. The one or more buffer layers may be selected to provide optimal microelectronic device properties, such as minimal defects, reduced charge accumulation, and reduced current leakage.