摘要:
In a method for fabricating a graphene structure, there is formed on a fabrication substrate a pattern of a plurality of distinct graphene catalyst materials. In one graphene synthesis step, different numbers of graphene layers are formed on the catalyst materials in the formed pattern. In a method for fabricating a graphene transistor, on a fabrication substrate at least one graphene catalyst material is provided at a substrate region specified for synthesizing a graphene transistor channel and at least one graphene catalyst material is provided at a substrate region specified for synthesizing a graphene transistor source, and at a substrate region specified for synthesizing a graphene transistor drain. Then in one graphene synthesis step, at least one layer of graphene is formed at the substrate region for the graphene transistor channel, and at the regions for the transistor source and drain there are formed a plurality of layers of graphene.
摘要:
In a method for fabricating a graphene structure, there is formed on a fabrication substrate a pattern of a plurality of distinct graphene catalyst materials. In one graphene synthesis step, different numbers of graphene layers are formed on the catalyst materials in the formed pattern. In a method for fabricating a graphene transistor, on a fabrication substrate at least one graphene catalyst material is provided at a substrate region specified for synthesizing a graphene transistor channel and at least one graphene catalyst material is provided at a substrate region specified for synthesizing a graphene transistor source, and at a substrate region specified for synthesizing a graphene transistor drain. Then in one graphene synthesis step, at least one layer of graphene is formed at the substrate region for the graphene transistor channel, and at the regions for the transistor source and drain there are formed a plurality of layers of graphene.
摘要:
The present invention generally relates, in some aspects, to nanoscale wire devices and methods for use in determining analytes suspected to be present in a sample. Certain embodiments of the invention provide a nanoscale wire that has improved sensitivity, as the carrier concentration in the wire is controlled by an external gate voltage, such that the nanoscale wire has a Debye screening length that is greater than the average cross-sectional dimension of the nanoscale wire when the nanoscale wire is exposed to a solution suspected of containing an analyte. This Debye screening length (lambda) associated with the carrier concentration (p) inside nanoscale wire is adjusted, in some cases, by adjusting the gate voltage applied to an FET structure, such that the carriers in the nanoscale wire are depleted.
摘要:
Electrical devices comprised of nanowires are described, along with methods of their manufacture and use. The nanowires can be nanotubes and nanowires. The surface of the nanowires may be selectively functionalized Nanodetector devices are described.
摘要:
Electrical devices comprised of nanoscopic wires are described, along with methods of their manufacture and use. The nanoscopic wires can be nanotubes, preferably single-walled carbon nanotubes. They can be arranged in crossbar arrays using chemically patterned surfaces for direction, via chemical vapor deposition. Chemical vapor deposition also can be used to form nanotubes in arrays in the presence of directing electric fields, optionally in combination with self-assembled monolayer patterns. Bistable devices are described.
摘要:
Nanowires are disclosed which comprise transition metal oxides. The transition metal oxides may include oxides of group II, group III, group IV and lanthanide metals. Also disclosed are methods for making nanowires which comprise injecting decomposition agents into a solution comprising solvents and metallic alkoxide or metallic salt precursors.
摘要:
A system and method for manipulating and processing nanowires in solution with arrays of holographic optical traps. The system and method of the present invention is capable of creating hundreds of individually controlled optical traps with the ability to manipulate objects in three dimensions. Individual nanowires with cross-sections as small as 20 nm and lengths exceeding 20 μm are capable of being isolated, translated, rotated and deposited onto a substrate with holographic optical trap arrays under conditions where single traps have no discernible influence. Spatially localized photothermal and photochemical processes induced by the well-focused traps can also be used to melt localized domains on individual nanowires and to fuse nanowire junctions.
摘要:
The present invention generally relates to liquid films containing nanostructured materials, and, optionally, the use of this arrangement to organize nanostructures and to transfer the nanostructures to a surface. Liquid films containing nanostructures, such as nanoscale wires, can be formed in a gas such as air. By choosing an appropriate liquid, a liquid film can be expanded, for example to form a “bubble” having a diameter of at least about 5 cm or 10 cm. The size of the bubble can be controlled, in some cases, by controlling the viscosity of the liquid film. In some embodiments, the viscosity can be controlled to be between about 15 Pa s and about 25 Pa s, or controlled using a mixture of an aqueous liquid and an epoxy. In some cases, the film of liquid may be contacted with a surface, which can be used to transfer at least some of the nanostructures to the surface. In some cases, the nanostructures may be transferred as an orderly or aligned array. Once on the surface, the nanostructures may be reacted, etched, layered, etc., e.g., for use in an electric circuit.
摘要:
Various aspects of the present invention generally relate to nanoscale wire devices and methods for use in determining analytes suspected to be present in a sample, and systems and methods of immobilizing entities such as reaction entities relative to nanoscale wires. In one aspect, a nucleic acid, such as DNA, may be immobilized relative to a nanoscale wire, and in some cases, grown from the nanoscale wire. In certain embodiments, the nucleic acid may interact with entities such as other nucleic acids, proteins, etc., and in some cases, such interactions may be reversible. As an example, an enzyme such as telomerase may be allowed to bind to DNA immobilized relative to a nanoscale wire. The telomerase may extend the length of the DNA, for instance, by reaction with free deoxynucleotide triphosphates in solution; additionally, various properties of the nucleic acid may be determined, for example, using electric field interactions between the nucleic acid and the nanoscale wire. In another aspect, the invention provides systems and methods for attaching entities such as nucleic acids, receptors such as gangliosides, or surfactants to a nanoscale wire, for example, using aldehyde-producing reactions or hydrophobic interactions. In some aspects, certain systems and methods of the present invention may be used to determine an analyte suspected to be present in a sample, for example, a toxin, a virus, or a small molecule. Systems and methods of using such nanoscale wires are disclosed in other aspects of the invention, for example, within a microarray. Still other aspects of the invention include assays, sensors, kits, and/or other devices that include such nanoscale wires, methods of making and/or using functionalized nanoscale wires (for example, in drug screening or high-throughput screening), and the like.
摘要:
A bulk-doped semiconductor may be at least one of the following: a single crystal, an elongated and bulk-doped semiconductor that at any point along its longitudinal axis, has a largest cross-sectional dimension less than 500 nanometers, and a free-standing and bulk-doped semiconductor with at least one portion having a smallest width of less than 500 nanometers. At least one portion of such a semiconductor may have a smallest width of less than 200 nanometers, or less than 150 nanometers, or less than 100 nanometers, or less than 80 nanometers, or less than 70 nanometers, or less than 60 nanometers, or less than 40 nanometers, or less than 20 nanometers, or less than 10 nanometers, or even less than 5 nanometers. Such a semiconductor may be doped during growth. Such a semiconductor may be part of a device, which may include any of a variety of devices and combinations thereof.