Abstract:
In a construction for electrically connecting electrical unit with joint surfaces thereof opposed to each other, wiring patterns electrically connected with distortion gauges are formed on function-element forming surfaces of each electrical three-dimensional unit and are extended to edge portions formed between the function-element forming surfaces and adjacent wiring surfaces as the joint surfaces to form first lands; second lands extending from the edge portions by a specified distance are formed at positions of the wiring surfaces corresponding to the first lands; and electrical connectors displaying a joining performance upon being pressed together are formed to bridge the first and second lands while being held in close contact with the first and second lands. A plurality of three-dimensional electrical unit can be securely and easily electrically connected with each other with high precision.
Abstract:
Fine conductive particles are composed of metallic conductive powder, and an insulating organic capping layer on the grains of the powder. The metallic conductive powder have grains with a diameter ranging from 1 to 20 microns, and the capping layer has a thickness of 50-400 nm, which is able to flow by thermo-pressing. The insulating organic capping layer is prepared from a silane having a reactive functionality, a fluorine-containing silane and a compound or a resin having a functionality able to reactive with the reactive functionality.
Abstract:
An anisotropic electrically conducting interconnect is disclosed in which an adhesive comprising particles having a breakable coating of at least one electrically nonconductive material is compressed between a first contact and a second contact. Compression to two contacts breaks the breakable coating exposing an electrically conducting material which makes contact with the first and second contacts. The electrically conducting material may be a metal conductor or a two-part reactive conductive resin/catalyst system. Also disclosed are processes for making such electrical interconnects and adhesives for use in making electrical interconnect.
Abstract:
A voltage variable material (nullVVMnull) including an insulative binder that is formulated to intrinsically adhere to conductive and non-conductive surfaces is provided. The binder and thus the VVM is self-curable and applicable in a spreadable form that dries before use. The binder eliminates the need to place the VVM in a separate device or to provide separate printed circuit board pads on which to electrically connect the VVM. The binder and thus the VVM can be directly applied to many different types of substrates, such as a rigid (FR-4) laminate, a polyimide or a polymer. The VVM can also be directly applied to different types of substrates that are placed inside a device. In one embodiment, the VVM includes doped semiconductive particles having a core, such which can be silicon, and an inert coating, which can be an oxide. The particles are mixed in the binder with conductive particles.
Abstract:
An electrically connecting structure including a first electronic part having a first connecting terminal, a second electronic part having a second connecting terminal which is arranged to face the first connecting terminal of the first electronic part, and an anisotropic conductive adhesive arranged between the first connecting terminal and the second connecting terminal. The anisotropic conductive adhesive includes an insulating adhesive, a plurality of first conductive particles which are covered with an insulating layer, and a plurality of second conductive particles which are not covered with any material. The first conductive particles and the second conductive particles have substantially the same size. Portions of the insulating layer covering the first conductive particles are brought into contact with the first connecting terminal and the second connecting terminal, and are broken away, under a force which is applied to the first connecting terminal and the second connecting terminal, so that the first conductive particles are brought into contact with the first connecting terminal and the second connecting terminal. The second conductive particles are brought into contact with the first connecting terminal and the second connecting terminal under the force which is applied to the first connecting terminal and the second connecting terminal, and the first connecting terminal and the second connecting terminal are electrically connected to each other through the first conductive particles and the second conductive particles.
Abstract:
The invention provides a lighting device (1000) comprising (i) a light source (100) configured to generate light source light (101), wherein the light source (100) comprises a solid state light source, and (ii) a support (200) configured to support the light source (100), wherein the support (200) comprises a metal based thermally conductive material (201), wherein the lighting device (1000) further comprises (iii) a layered element (300), configured in physical contact with the support (200), wherein the layered element (300) comprises one or more layers (310), wherein the layered element (300) at least comprises an electrically insulating first layer (311), wherein at least part of the layered element (300) is configured between the light source (100) and the support (200) such that during operation part of the light source light (101) irradiates the layered element (300), wherein the layered element (300) comprises light reflective particles (410), wherein at least 50 wt. % of the particles have a flake-like shape.
Abstract:
A printed circuit board includes an electrically conductive layer and a dielectric layer including a polymer. The polymer includes at least one of a carbon layer structure and a carbon-like layer structure.
Abstract:
A step of scattering electrically conductive particles on a wiring board having wiring that is formed in accordance with an array pattern of the electrically conductive particles and prevented from being charged, and charging the electrically conductive particles; a step of aligning the charged electrically conductive particles in a predetermined array pattern corresponding to the wiring pattern by moving a squeegee on the wiring board; and a step of bonding a transfer film having an adhesive material layer formed thereon to the wiring board and transferring the electrically conductive particles aligned in a predetermined array pattern to the adhesive layer.
Abstract:
A step of scattering electrically conductive particles on a wiring board having wiring that is formed in accordance with an array pattern of the electrically conductive particles and prevented from being charged, and charging the electrically conductive particles; a step of aligning the charged electrically conductive particles in a predetermined array pattern corresponding to the wiring pattern by moving a squeegee on the wiring board; and a step of bonding a transfer film having an adhesive material layer formed thereon to the wiring board and transferring the electrically conductive particles aligned in a predetermined array pattern to the adhesive layer.
Abstract:
Conductive patterns and methods of using and printing such conductive patterns are disclosed. In certain examples, the conductive patterns may be produced by disposing a conductive material between supports on a substrate. The supports may be removed to provide conductive patterns having a desired length and/or geometry.