Abstract:
A flexible circuit includes a plurality of electrical traces and a plurality of probe tips directly formed thereto. The electrical traces are made of a first electrically conductive material and the probe tips are made of a second electrically conductive material that is harder than the first electrically conductive material. The first material is copper or a copper alloy and the second material is nickel or a nickel alloy, where the second material may be plated with gold. Portions of the probe tips are exposed to facilitate electrical contact with contact pads of another electrical circuit. The flexible circuit may also include a ground layer to facilitate electrical correction with another electrical circuit at relatively high frequencies.
Abstract:
Apparatus for holding and securing an electrical module, IC, or other electronic components to a PCB that is easy to use and manipulate. The apparatus utilizes a transitional element to hold the electrical module or IC and then secure itself to the PCB using fasteners or the like. Preferred methods for assembling and using the apparatus are disclosed.
Abstract:
The present invention includes stack flexible circuit layers having raised features or bumps for Z-axis interconnection to another circuit layer or electrical component. An intermediate or adhesive layer separates each circuit layer. The multiple layers are stacked with the raised features from one layer aligning with pads of an overlying or underlying layer and are laminated so that the raised features pierce the intermediate or adhesive layer and make electrical contact with the corresponding pad of the adjacent circuit layer. The raised features may have a shape sufficient to penetrate the intermediate and/or the adhesive layer allowing blind vias to be made without pre-drilling the intermediate or adhesive layers. The intermediate layer of film can have a function other than or in addition to that of an adhesive. For example, in a connector application where the raised feature is used to make contact to corresponding pads, a film that has a low permeability to water could be placed between the raised features and corresponding pads on the next layer. The low water permeability film would act as a sealant to prevent environmental attack on the connection. The raised feature would penetrate the sealant to make electrical contact to a corresponding pad. This would allow the connector to be disassembled and reconnected.
Abstract:
The invention includes the use of a decal to produce a packaged chip either at the chip level or wafer level. The decal includes a substrate containing circuitry that routes the chip output pads to bumps prepared for package attachment to another substrate such as a printed circuit board. The decal can be applied either to the wafer or to a single chip. The decal protects the chip and if necessary changes the interconnection density so that the chip can be interfaced with a printed circuit board or other electronic device. This configuration also may allow the packaged integrated circuit to be tested utilizing the bumps on the decal as temporary electrical contact features.
Abstract:
A process for forming an integral edge seal in a gas distribution plate for use in a fuel cell. A seal layer is formed along an edge of a porous gas distribution plate by impregnating the pores in the layer with a material adapted to provide a seal which is operative dry or when wetted by an electrolyte of a fuel cell. Vibratory energy is supplied to the sealing material during the step of impregnating the pores to provide a more uniform seal throughout the cross section of the plate.
Abstract:
An electrolyte distribution supply system for use with a fuel cell having a wicking medium for drawing electrolyte therein is formed by a set of containers of electrolyte joined to respective fuel cells or groups thereof in a stack of such cells. The electrolyte is separately stored so as to provide for electrical isolation between electrolytes of the individual cells or groups of cells of the stack. Individual storage compartments are coupled by individual tubes, the ends of the respective tubes terminating on the wicking medium in each of the respective fuel cells. The individual compartments are filled with electrolyte by allowing the compartments to overflow such as in a cascading fashion thereby maintaining the requisite depth of electrolyte in each of the storage compartments. The individual compartments can also contain packed carbon fibers to provide a three stage electrolyte distribution system.
Abstract:
A flexible circuit includes a plurality of electrical traces and a plurality of probe tips directly formed thereto. The electrical traces are made of a first electrically conductive material and the probe tips are made of a second electrically conductive material that is harder than the first electrically conductive material. The first material is copper or a copper alloy and the second matieral is nickel or a nickel alloy, where the second material may be plated with gold. Portions of the probe tips are exposed to facilitate electrical contact with contact pads of another electrical circuit. The flexible circuit may also include a ground layer to facilitate electrical correction with another electrical circuit at relatively high frequencies.
Abstract:
A method for attaching an integrated circuit to a flexible circuit which includes the acts of providing an integrated circuit having a plurality of contact pads formed upon a surface thereof; providing a flexible circuit possessing a plurality of contact bumps formed integral to a surface area; and attaching the integrated circuit to the flexible circuit by fusing at least some of the contact bumps of the flexible circuit to at least some of the contact pads of the integrated circuit. The contact bumps have a shape which mitigates local stress buildup within the contact bumps after attachment of the contact bumps to the contact pads, so as to enhance the reliability of the electrical connection.
Abstract:
The present invention includes composite support substrate for both flexible and rigid board circuit applications and method of making the same. The composite substrate is composed of at least two materials formed under the circuitry. A first material is a conventional matrix such as a polyimide/acrylic adhesive, and a second material having unique properties that are useful locally in isolated locations. For instance, the second material may be nonporous to moisture, optically clear, and/or thermally conductive. The second material is integrated into the circuit matrix at specific localized areas where desired with portions coplanar with the first material so that circuit traces remain continuous as they pass from the first material to the second. For example, an integrated circuit chip may be isolated from the polyimide matrix, which is porous in moisture, by using the second material that is nonporous to moisture at locations where the integrated circuit chip is to be attached, thus isolating the integrated circuit chip from the polyimide and preventing moisture from flowing through to the chip.
Abstract:
Disclosed is a flexible substrate having a thermal contact that provides a continuous high thermal conductivity path from a heat generating component to a heat sink. In one embodiment, the thermal contact includes a metallic trace including a raised feature of thermally conductive material. A solder ball or fillet may be used to make a connection between the raised feature and the heat generating component or between the raised feature and the underlying heat sink or both.