Abstract:
Apparatus and methods for electroplating are described. Apparatus described herein include anode supports including positioning mechanisms that maintain a consistent distance between the surface of the wafer and the surface of a consumable anode during plating. Greater uniformity control is achieved.
Abstract:
Methods of forming a capping layer on conductive lines in a semiconductor device may be characterized by the following operations: (a) providing a semiconductor substrate comprising a dielectric layer having (i) exposed conductive lines (e.g., copper lines) disposed therein, and (ii) an exposed barrier layer disposed thereon; and (b) depositing a capping layer material on at least the exposed conductive lines of the semiconductor substrate. In certain embodiments, the method may also involve removing at least a portion of a conductive layer (e.g., overburden) disposed over the barrier layer and conductive lines to expose the barrier layer.
Abstract:
A main reservoir holds cool reactant liquid. A reaction vessel for treating a substrate is connected to the main reservoir by a feed conduit. A heater is configured to heat reactant liquid in the feed conduit before the liquid enters the reaction vessel. Preferably, the heater is a microwave heater. A recycle conduit connects the reaction vessel with the main reservoir. Preferably, a recycle cooler cools reactant liquid in the recycle conduit before the liquid returns to the main reservoir. Preferably, an accumulation vessel is integrated in the feed conduit for accumulating, heating, conditioning and monitoring reactant liquid before it enters the reaction vessel. Preferably, a recycle accumulator vessel is integrated in the recycle conduit to accommodate reactant liquid as it empties out of the reaction vessel.
Abstract:
Plating accelerator is applied selectively to a substantially-unfilled wide (e.g., low-aspect-ratio feature cavity. Then, plating of metal is conducted to fill the wide feature cavity and to form an embossed structure in which the height of a wide-feature metal protrusion over the metal-filled wide-feature cavity is higher than the height of metal over field regions. Most of the overburden metal is removed using non-contact techniques, such as chemical wet etching. Metal above the wide feature cavity protects the metal-filled wide-feature interconnect against dishing, and improved planarization techniques avoid erosion of the metal interconnect and dielectric insulating layer. In some embodiments, plating of metal onto a substrate is conducted to fill narrow (e.g., high-aspect-ratio feature cavities) in the dielectric layer before selective application of plating accelerator and filling of the wide feature cavity.
Abstract:
Methods and apparatus are provided for the chemical mechanical planarization (CMP) of a surface of a work piece. In accordance with one embodiment of the invention the apparatus comprises a plurality of CMP systems, a plurality of load cups for loading unprocessed work pieces into and unloading processed work pieces from the plurality of CMP systems, a plurality of cleaning stations for cleaning processed work pieces unloaded from the CMP systems, and a single robot configured to transfer unprocessed work pieces to the plurality of load cups and to transfer processed work pieces from the load cups to the plurality of cleaning stations.
Abstract:
An apparatus for engaging a work piece during plating facilitates electrolyte flow during a plating operation. The apparatus helps to control the plating solution fluid dynamics and electric field shape to keep the wafer's local plating environment uniform and bubble free. The apparatus holding the work piece in a manner that facilitates electrolyte circulation patterns in which the electrolyte flows from the center of the work piece plating surface, outward toward the edge of the edge of the work piece. The apparatus holds the work piece near the work piece edges and provides a flow path for electrolyte to flow outward away from the edges of the work piece plating surface. That flow path has a “snorkel” shape in which the outlet is higher than the inlet. In addition, the flow path may have a slot shape that spans much or all of the circumference of holding apparatus. It may be made from a material that resists deformation and corrosion such as certain ceramics.
Abstract:
A scanning probe microscope includes probe moved into and out of engagement with a sample surface by a combination of deflections occurring within a fast actuator, having a relatively small range of motion, and a slow actuator, having a relatively large range of motion. When the deflection of the fast actuator is moved outside a predetermined range, in which such deflection is a linear function of applied voltage, the slow actuator is operated so that subsequent operation of the fast actuator can return the fast actuator to its predetermined range, Furthermore, when it is necessary to operate the slow actuator in this way, a scanning motion moving the sample surface past the probe is stopped until the probe is brought into a correct level of engagement with the sample surface, with the fast actuator deflected within the predetermined range.
Abstract:
An apparatus for holding work pieces during electroless plating has certain improved features designed for use at relatively high temperatures (e.g., at least about 50 degrees C.). Cup and cone components of a “clamshell” apparatus that engage a work piece are made from dimensionally stable materials with relatively low coefficients of thermal expansion. Further, O-rings are removed from positions that come in contact with the work piece. This avoids the difficulty caused by O-rings sticking to work piece surfaces during high temperature processing. In place of the O-ring, a cantilever member is provided on the portion of the cone that contacts the work piece. Still further, the apparatus makes use of a heat transfer system for controlling the temperature of the work piece backside during plating.
Abstract:
Apparatus and methods for electroplating are described. Apparatus described herein include anode supports including positioning mechanisms that maintain a consistent distance between the surface of the wafer and the surface of a consumable anode during plating. Greater uniformity control is achieved.
Abstract:
Methods of forming a capping layer on conductive lines in a semiconductor device may be characterized by the following operations: (a) providing a semiconductor substrate comprising a dielectric layer having (i) exposed conductive lines (e.g., copper lines) disposed therein, and (ii) an exposed barrier layer disposed thereon; and (b) depositing a capping layer material on at least the exposed conductive lines of the semiconductor substrate. In certain embodiments, the method may also involve removing at least a portion of a conductive layer (e.g., overburden) disposed over the barrier layer and conductive lines to expose the barrier layer.